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Abstract
Integrating computational thinking (CT) and science education is complex, and assessing the resulting learning gains even more so.
Arguments that assessment should match the learning (Biggs, Assessment & Evaluation in Higher Education, 21(1), 5–16. 1996;
Airasian andMiranda, Theory into Practice, 41(4), 249–254. 2002; Hickey and Zuiker, Journal of the Learning Sciences, 21(4), 522–
582. 2012; Pellegrino, Journal of Research in Science Teaching, 49(6), 831–841. 2012; Wiggins, Practical Assessment, Research and
Evaluation, 2(2). 1990) lead to a performance-oriented approach to assessment, using tasks that mirror the integrated instruction. This
approach reaps benefits but also poses challenges. Integrated CT is a new approach to learning. Movement is being made toward
understanding what it means to operate successfully in this context, but consensus is neither general nor time tested (Kaput and Schorr,
Research on technology and the teaching and learning of mathematics: Case and perspectives (Vol. 2, pp. 211–253) 2008).Movement
is also being made toward developing methods for assessing CT. Despite the benefits of matching assessment with pedagogy, there
may be intrinsic losses. One problem is that interactions between the two domainsmay invalidate the results, either because the gains in
one may be easier to measure at certain times than the gains in the other, or because interactions between the two domains may cause
measurement interference. Our examination draws upon both theoretical basis and also existing practices, particularly from our own
work integrating CTand secondary science. We present a mixed-methods analysis of student assessment results and consider potential
issues with moving too quickly toward relying on a rubric-based approach to evaluating this student learning. Centrally, we emphasize
the importance of assessment approaches that reflect one of the most important affordances of computational environments, that is, the
expression of multiple ways of knowing and doing (Turkle and Papert, Journal of Mathematical Behavior, 11(1), 3–33. 1992).
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Introduction

This article focuses on one issue of general importance em-
bedded in a specific, larger project that explored the

integration of computational thinking (CT) into 7th and 8th
grade earth science curriculum and classrooms: how integrat-
ing CT into classroom-based core curricular instruction should
influence assessment. Best practices emphasize parallels be-
tween assessments and learning experiences, suggesting that
an integrated approach to instruction should be complemented
by an integrated approach to assessment. At the same time,
teachers and administrators as well as researchers need to
weigh the benefits of integrated instruction against existing
practices and priorities. Furthermore, we need to understand
the nature of student gains. These goals suggest differentiated
assessment. We investigate the idea that although assessment
may be blended, scoring may be differentiated. Our experi-
ence suggests that this can be done; however, it is not without
consequences. We discuss some of the challenges we faced
and present some things learned from taking this perspective.
In particular, the design of a rubric interacts with the ability to
take these dual perspectives. Indeed, under debate during de-
velopment of the rubric were the trade-offs between adequate
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inter-rater reliability in scoring and sensitivity to small but
important movement toward incompletely mastered skills.
These trade-offs had implications for the width of the gap
between two epistemological stances: one that maintained that
students had learned CT if they showed evidence of mastery
of particulars and one that prioritized attempts to grasp the
abstractions of different representations. Thus, the question
of how to assess is tied to claims about learning goals and
instructional strategy.

The Larger Chem+C Project

Like many projects undertaken under the rubric of design-
based research in education (Barab, and and Squire 2004;
Bell et al. 2004; Hoadley 2003), the current project imple-
mented curriculum, teacher training and assessment at the
same time, with the idea of iterating toward a deeper align-
ment of all these necessary elements. The prospects for scaling
up CT rest on its ability to handle the diversity of student
knowledge. The project grappled with this by working with
students with little and usually no prior knowledge of CT or
computing. Additionally, we saw the teachers as gate-keepers
and took seriously the ideas that the teachers we worked with
and hoped to engage in the future (1) had signed up to be
science teachers, not computer scientists; (2) were working
under stressful conditions, with an extremely full and chal-
lenging curriculum; and (3) despite enthusiasm, knew little
initially about CT and had, at most, 3 weeks of professional
development, which our observations suggest may not be
enough for mastery of an entirely new field (Wall Bortz
et al. 2019). Our goal was therefore to infuse elements of CT
into science instruction in a way that aligned with the instruc-
tional purposes that the teachers were already engaged with.

In 2006, Wing coined the term “computational thinking”
(CT) (Wing 2006) to draw attention to the habits of mind and
skills associated with problem-solving like a computer scien-
tist. This definition struck a chord both because of its prag-
matic import and because computer scientists seemed to share
an intuition that there was, indeed, a cognitive disciplinary
core that was well described by the term “CT.”Various efforts
to operationalize this definition include proposed lists of ele-
ments characteristic of CT (Brennan and Resnick 2012; Lee
et al. 2011; Weintrop et al. 2015). CTcan be taught directly by
teaching computer science, but there are many reasons to in-
tegrate it into core curriculum: to make CT available to all
students in classes all students take, to alleviate pressure on
an already congested K–12 curriculum and to deepen learning
in both CT and the core discipline. At the same time, integrat-
ing CT into the core curriculum draws attention gaps in deep
theory of learning progressions and dependencies.

In this project, we started by developing dynamic, visual
simulations that illustrate important aspects of the science the
students were learning. Student engagement with such

simulations could by itself be considered to constitute an ele-
ment of instruction in CT. However, we did more than ask
students to use the simulations.We taught both CTand science
by asking students to evaluate the simulations. Then, we
moved into programmatic representations of the simulations.
In each of the three 2-week replacement units, we asked stu-
dents to find and alter progressively more complex elements
of the science models in the code.

Here, we examine the responses of 182 eighth-grade stu-
dents with a particular focus on those who scored the fewest
points on the items that blended science and CT. We show
that, in these important cases, learning in the separate disci-
plines may be uncovered by a differentiated approach to
scoring.

In this way, while respecting the need to have efficient
assessments and scoring, we bring to assessment a kind of
multiplicity that acknowledges epistemological pluralism
(Turkle and Papert 1992). Students’ varied approaches to
representing their learning challenged our thinking about ap-
plying traditional methods of rubric scoring to a non-
traditional performance instrument.

Perspectives

Computational Thinking and Integration with Science

Despite varied approaches to defining CT and its components
(Voogt et al. 2015), arguments for its applied value across
disciplines are many (Gane et al. 2018; National Research
Council 2011; Settle et al. 2012; Wing 2006), as are those that
students should have opportunities to access CT early in their
educational experience (Grover and Pea 2018; Israel et al.
2015; Lye and Koh 2014). Rather than adding to the already
congested K–12 curricula, an alternate approach is to integrate
CTwith disciplines already offered (Qualls and Sherrell 2010;
Sengupta et al. 2013; Wilensky and Reisman 2006; Wing
2006). This approach can actually deepen learning both in
the discipline and CT, as this affords opportunities for more
practical applications of the two (diSessa 2000; Kaput and
Schorr 2008; Papert 1980; Wilensky and Stroup 1999).
Science in particular shares pedagogical connections with
CT (Basu et al. 2018; Dickes and Sengupta 2013; Goldstone
andWilensky 2008; Jacobson and Wilensky 2006; Reed et al.
2005). Moreover, integrating CT into classes that all students
take may result in more widespread impact (Grover and Pea
2018; Qualls and Sherrell 2010). Even beyond this, exposure
to some CT may build a foundation for later work.

Our intervention was implemented with students
possessing varied levels of experience with CT, most of whom
had not encountered CTconcepts at all. Therefore, we viewed
this work as a bootstrapping opportunity—introducing stu-
dents to facets of CT that would act as scaffolds for future
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encounters with practices defined in more in-depth frame-
works, such as the taxonomy of computational thinking prac-
tices in mathematics and sciences presented byWeintrop et al.
(2015). This framework in particular informed the develop-
ment of our assessment and thus instructional activities, as
will be described in a later section. In this way, we promoted
an early stage of legitimate peripheral participation. This
meant satisficing (Simon 1955) between science and CT
learning, that is, aiming to fulfill each of the multiple goals
well-enough for current purposes rather than optimizing one
goal. The experience of the simulation and code lay the
groundwork for such concepts as (1) learning those compo-
nents of syntax (objects, properties, methods, conditionals) as
they expressed scientific ideas; (2) reading code; (3) planning;
and (4) the process of changing, testing and debugging code.
In other words, students encountered components of CT that
revolved around Weintrop et al.’s (2015) modeling and simu-
lation practices, and a raft of elements summarized by
Weintrop et al. as programming, abstraction, troubleshooting
and debugging. These focal elements served as overarching
CT learning goals repeatedly explored by students across mul-
tiple CT topics (see Table 1). A pedagogical innovation in-
cluded importing from more advanced computer science in-
struction the common practice of asking students to recognize
bits of the science model in code they may not have been able
to fully understand. This is a particularly important technique
to teach explicitly in low-socio-economic status contexts
where students may fear failure.

Assessing Computational Thinking

As CT makes its way into the K–12 curriculum, methods for
measuring learning gains in this new domain are imperative for
drawing conclusions about how it impacts learning (Lee et al.
2011;Werner et al. 2012;Grover&Pea, 2013). Existing attempts
to measure CT vary; more research is needed before conclusions
can be drawn about best approaches (Yadav et al. 2014).

Given the nature of CT elements as skills that one applies
rather than facts that one knows, many have utilized
performance-style assessments (Basu et al. 2018; I. Lee et al.
2011; Settle and Perkovic 2010; Sherman and Martin 2015;
Weintrop et al. 2014; Werner et al. 2012). Performance-
assessments match the instructional context and often involve
open-ended tasks (Marzano et al. 1993). However, scoring
these tasks can be time consuming (Brennan and Resnick
2012). One approach is the design of tools to automatically
score students’ CT through analysis of their activity in the
programming environment (Koh et al. 2010; Basu et al.
2018; Moreno-León and Robles 2015). While automation re-
duces the workload for the scorer, it is not clear whether the
system can accurately interpret the multiple presentations of
students’ demonstrations of CT (Brennan and Resnick 2012).
Koh et al. (2014) developed a tool to assess students’

applications of CT in real time. Their system displays hierar-
chical CT patterns based on students’ coding activities and
reveals these to teachers to enable formative assessment
throughout an intervention. Another approach to efficiently as-
sess CT is the design of multiple-choice assessments (Román-
González 2015). Grover (2015) argues for “systems of assess-
ment” (see also Pellegrino 2012) and refers to a study conduct-
ed in a 6-week introductory computer science (CS) course that
utilized short quizzes, open-ended assignments, and a summa-
tive assessment comprised of multiple-choice and open-ended
questions requiring interaction with or interpretation of code.
Similarly, Meerbaum-Salant et al. (2013) balance conclusions
from one assessment of CS concepts with other qualitative
measures, a balance that Yaşar (2018) argues is necessary for
understanding the impact of CT in education. Blikstein and
Wilensky (2009) utilize multiple forms of data in order to un-
derstand students' CT learning, including observations, student
interviews, questionnaires, open-ended modeling tasks, and
other student-generated artifacts.

The majority of CTassessments assess only CT, but with CT
now seeping out of the CS classroom into other disciplinary
areas, we face the challenge of assessing students’ experiences
learning two integrated domains. In fact, the challenge is not
limited to the assessment of CT, as both the Framework for
K–12 Science Education (Council, Education, Education,, and
Standards 2012) and the Next Generation Science Standards
(NGSS Lead States 2003) specify the integration of cross-
cutting concepts and skills across science education. Pellegrino
(2013) argues that given the integrated and cross-influential na-
ture of assessment and instruction, there is a need for measure-
ment tools that integrate these concepts with the discipline. The
complexity of CT itself makes integration particularly challeng-
ing, as CT has been conceived of as comprising multiple skills,
and CT knowledge and programming knowledge can also be
difficult to differentiate (Koh et al. 2014).

Few reports of such integrated assessments exist. Perković
et al. (2010) describe integration of CT into various general
education courses at the undergraduate level for which they
developed integrated assessment tasks. They acknowledge that
further refinement of such tasks is needed.Weintrop et al. (2014)
report on authentic assessments that mirrored the instructional
context of CT and STEM. These are administered online and in
the programming environment, thus allowing students to “ex-
plore and engage with the concepts in a dynamic way” (p.25).
Basu et al. (2017), rather, include both science and CTconcepts
on their pre-/post-test, but each domain is assessed in isolation
without any tasks that required integrated application of the two.
More research is needed to determine how and whether to inte-
grate this cross-cutting concept with disciplinary learning.

Scoring assessments of CT can be particularly problematic
with varying understandings of the concept being evaluated.
Creating rubrics to guide analysis can add reliability to the scor-
ing process but also poses an arduous task. Sherman andMartin
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(2015) describe an iterative process of use and revision of a
descriptive rubric to evaluate students’ application designs for
mobile CT, a subset of CT. Werner et al. (2012) share a similar
approach to rubric-based evaluation of students’ programming
tasks in the Alice programming language/environment. Our
work also includes rubric-based scoring, but we augment the
research on CT assessment by describing an assessment and
rubric that integrates science andCTaswell as important lessons
learned through a mixed-methods analysis of the results.

The CHEM+C Intervention

The research described here is part of a multi-year, multi-school
study of disciplinary integration of CT—in this case, withmiddle
school (seventh- and eighth-grade) science. The intervention
consisted of 3-week-long curricular sequences, referred to as
computational chemistry tasks (CCTs), designed to replace reg-
ular eighth-grade instruction of chemistry concepts. The research
team designed each CCT to address chemistry concepts with
which students typically struggle, such as chemical equilibrium
(Sendur et al. 2010), and the nature of matter (Herrmann-Abell
and DeBoer 2011; Lee et al. 1993; Stavy 1991)—concepts that
also present in the Texas Essential Knowledge and Skills (TEKS)
for science (Texas Education Agency 2013), and the Next

Generation Science Standards (NGSS) (NGSS Lead States
2003). These science principles were modeled in NetLogo.

Curriculum and Technology

Six teachers in three different schools participated in the inter-
vention, which in the first year was led by researchers as a
pilot. In the second year, researchers observed and collected
video data while teachers taught the CCTs. Our approach to
integrating CTassumed that students and teachers had no prior
experience with CT or its integration, yet the goal was to
provide students with a CT-infused approach that prioritized
deepening their understanding of the science. Each CCT
followed a curricular sequence that combined traditional sci-
ence strategies, such as physical experiments and argument-
driven inquiry (ADI) (Sampson and Grooms 2008), with spe-
cially designed technological environments implemented in
NetLogo (Wilensky 1999). Figure 1 presents the interface
for the first CCT. On day 1 of each CCT, an anchoring
phenomenon (Schwarz et al. 2009) introduced the science to
be learned (Table 1). These demonstrations served to anchor
the students’ investigations in the computational model,
which showed the underlying molecular phenomenon that
gave rise to the observed macro-level phenomenon. After ini-
tial exploration of the NetLogo model using only the

Table 1 CHEM+C curricular topics by CCT

CCT1 CCT2 CCT3

Topic Water formation and splitting Copper sulfate and aluminum reaction Natural carbon cycle

Driving questions (Krajcik
et al. 1998)

“What is happening that we do not
normally see? What is present but is
not shown by the model?”

“How do you know that a chemical
reaction has occurred?”

“How does carbon move through
the environment?”

Anchoring phenomenon
(Schwarz et al. 2009)

Students perform physical
demonstration of the electrolysis of
water using a battery submerged in a
tub of water with test tubes above
each terminal to collect hydrogen
and oxygen gas.

Teacher performs physical
demonstration of the
aluminum/copper sulfate reaction.
An aluminum wrapped thermometer
is submerged in a beaker of copper
sulfate and water, resulting in the
displacement of copper as a precipi-
tate.

The simulation is used as the
anchoring phenomenon with
settings restricted to show only
macrophenomenon activity in
the carbon cycle.

Science topics Law of conservation of mass, balanced
chemical equations, properties of a
chemical reaction, collision theory,
reversibility, molecules vs. atoms,
and purposes and types of models
(NGSS: PS1.A, PS1.B, PS3.B,
MS-PS1–5, MS-PS1–4, MS-PS1–2,
MS-PS1–5, MS-PS1–2)

Review of CCT1 topics, properties and
signs of a chemical reaction, atomic
theory, precipitate, stoichiometry,
chemical vs. physical change, and
limiting reagents (NGSS: PS1.A,
PS1.B, PS3.B, MS-PS1–5,
MS-PS1–4, MS-PS1–2, MS-PS1–5,
MS-PS1–2)

Review of CCTs 1 and 2 topics,
carbon cycle, nature of carbon,
photosynthesis, cellular
respiration, energy transformation
(NGSS: LS1.C, LS2.B, PS3.D,
MS-LS2_1, MS-LS-1-7)

CT topics Basics of a NetLogo model, objects,
properties, breeds, debugging,
and model evaluation

Review of CCT1, coordinate plane in
NetLogo, patches, and conditionals

Review of CCTs 1 and 2, object
positioning, object movement,
variables and names, and
function call and statement
execution

Simulation model
improvement

Students add an object (Epsom salt) to
the model and assign scientifically
appropriate properties

Students make the background color
dependent on the amount of copper
sulfate.

Students add worms or
mushrooms (detritivores) that
decompose plants or animals.
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simulation and not yet evaluating the code, student groups
drew “another kind of model,” depicting on a white board
what they thought was happening in the computer simulation,
noting its key elements. Groups presented these to the class
and received feedback from the teacher and their peers (a
typical ADI activity). The transition frommacro-level demon-
stration to micro-level model emphasized the nature of models
as useful but imperfect (Box 1976, 1979). This contextualized
a model evaluation activity in which, using a guided
worksheet, students were asked to identify visible objects
and their properties in the simulation and call out aspects that
were either scientifically accurate, inaccurate, or missing.
Class discussions of these ideas led to scaffolded code modi-
fications intended to improve the scientific accuracy of the
model. Teachers guided students’ as they utilized existing
code as a model for modification. Prior to making changes
to the model, the students planned changes by filling out a
graphic organizer or writing pseudocode. This instruction
progressed in depth in each CCT. We note that sometimes
teachers stepped outside the science model to illustrate such
concepts as truth values nested in conditionals. For example,
some teachers started using a form of pseudo-code to organize
classroom behavior, as in “if you are wearing sandals and a t-
shirt, get your computer.”

Prior to implementing changes, students worked in groups
of three or four to plan how they would change the code.
Groups then had the opportunity to provide one another with
constructive criticism on their plans (a key element of ADI).

Changes to the model code were supported by the instructor or
by peers who successfully completed the task. Students were
asked to write reflections of their learning of science and CT
during each CCT.

An example of the integration of science learning and
CT in CCT1 was asking students to plan and implement
the presence of the MgSO4 (Epsom salt) that they had seen
in the anchoring phenomenon and identified as missing
from the simulation. As a first exercise, this did not involve
the complex chemistry of catalysts, but it did involve de-
bate about shape, size, distribution, and behavior of new
objects. Some argued that MgSO4 should be bigger than
H2O because it had more molecules; others argued that it
should be smaller because it did not play a role in the parts
of the process we were simulating. Later in CCT3, because
students had difficulty balancing the chemical formula for
the breakdown of glucose, we asked them to derive it by
locating the model in the code. Students expressed surprise
that when they saw the same number of elements in the
inputs and outputs of the code, and teachers expressed sur-
prise that the students were surprised. Table 1 provides
additional detail on the content of topics covered in each
CCT. The immensity of topics covered reflects the provi-
sion of a rich learning environment (Järvelä 1995). While
each topic was not explicitly “taught,” the intervention pro-
vided students with opportunities to deepen learning across
these topics, many of which were covered in prior science
instruction.

Fig. 1 NetLogo model of water forming and splitting
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Participants and Data Collection

We focus here on data from the classes of the three eighth-
grade teachers in a suburban area of low to moderate socio-
economic standing near Austin, TX. Informed consent was
obtained from all teachers and students included in the study.
Participants included the 182 students in these teachers’ clas-
ses, who all consented to participate and were present for both
the pre-/post-administrations of the performance assessment.
At the end of the project 39.5% of students indicated that this
project was their first experience with coding.

Sources of data include student-generated artifacts, such as
images of group drawings interpreting the anchoring
phenomenon, individual worksheets completed when explor-
ing and critiquing the model, student-written reflections on
their learning, video data from one class for each teacher, a
pre-/post-computational attitudes test (CAT), and a pre-/post-
performance assessment of computational thinking (PACT).
Our focus is the pre-/post-performance assessment, but other
data are described elsewhere (Gautam et al. 2017; Wall Bortz
et al. 2019).

Design of the PACT

Because of the reflexive relationship between instruction and
assessment (Biggs 1996), as science instruction evolves with
the integration of twenty-first century skills (Pellegrino and
Hilton 2013), assessments must follow. The PACT, as report-
ed here, was under iterative construction in relationship to the
curriculum. We note that the larger argument about the ap-
proach to scoring is, by and large, independent of its good-
ness. Nonetheless, the PACT consisted of five multi-
component tasks that were thought to allow students to dem-
onstrate both science learning and learning related to
programming and/or CT. Gane et al. (2018) argues that assess-
ments act as statements of what we want students to know and
to be able to do. However, many science assessments priori-
tize factual knowledge over conceptual understanding
(Herrmann-Abell and DeBoer 2011). We aimed to design a
performance-based assessment on which students could dem-
onstrate conceptual understanding of both CTand science. We
wanted students to apply these domains in tandem so we
chose to assess them with one instrument. This choice was
also influenced by literature arguing for authentic assessments
(Wiggins 1990) that match instruction (Airasian and Miranda
2002; Hickey and Zuiker 2012) and, as a result, reflect the
integration of core disciplines, such as CT (Pellegrino 2013).
“Matching to instruction,” however, becomes complicated
when (1) the intervention changes the underlying epistemo-
logical infrastructure of “what it means to know a subject”
(Kaput and Schorr 2008) or (2) as we will demonstrate, the
student must have gained in all integrated domains to be
regarded as having learned at all.

Design of the PACT as administered to these students uti-
lized an evidence-centered design (ECD) (Mislevy and
Haertel 2006) process with some progress in iterative valida-
tion (Buffum et al. 2015). First, domain analysis included the
design of several performance expectations (PEs; Table 2)
leading to the creation of items on the written assessment
through three major phases. Each PE identified a core idea
in science, a scientific practice, and a CT practice we wished
to target based on the NGSS (NGSS Lead States 2003) and
Weintrop et al.’s (2015) taxonomy. Second, we determined
what kind of student data could provide evidence that students
knew the core ideas and were able to do the practices. Third,
we formulated a task that would generate those kinds of data.

We constructed six PEs and presented them to participating
teachers and to an advisory board composed of experts in
Chemistry, CS, and STEM Education. We asked for feedback
regarding to what extent the core ideas and practices we iden-
tified were worth targeting, how well the data we proposed
would provide evidence about whether the expectations were
met, and how well the proposed task would provide students
with an opportunity to produce the data we suggested.We also
piloted a draft of the assessment with 70 eighth graders who
were asked to highlight any parts of the assessment that were
unclear. Based on input from these parties and the need to
administer the test in 40 min, we narrowed our scope to three
PEs and thereby constructed the assessment items. The PEs
follow: (1) “Given a section of code for an agent-based com-
putational model of a chemical reaction, identify the proper-
ties and actions of an object”; (2) “Explain how to change an
agent-based computational model of a chemical reaction to
implement a similar but distinct chemical reaction”; and (3)
“Given a section of code for a procedure representing a chem-
ical reaction in an agent-based computational model, extend
the code to implement a procedure for a similar but distinct
chemical reaction.” See Table 2 for a fuller explanation tied to
the assessment item analyzed later.

The assessment included items requiring students to (1)
interpret excerpts of code, and at times, what actions they
would produce in a model; (2) answer questions about the
science concepts encountered in the CCTs; and (3) indicate
modifications they would make to an excerpt of code to im-
plement a different chemical reaction and justify these chang-
es. Due to limited resources of the research team for design
and scoring as well as technology resources at the school, the
PACTwas administered as a paper-pencil task.

We secured an additional research site for the purpose of
further piloting the curricular sequence and the PACT.
Researchers led the three CCTs with two seventh-grade sci-
ence classes and administered the CAT and the PACT before
and after the units. Students’ questions about and performance
on the items influenced modifications to the wording of the
instructions as well as changes to some of the items. Our
iterative design process reflects an exploratory approach to
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the development of an integrated assessment—a new endeav-
or for both the teachers and researchers involved—with the
purpose of making moves toward a more sophisticated final
product.

Results

Assessment Scoring and Inter-rater Reliability

Due to time and personnel constraints, the assessments were
to be scored by undergraduate researchers who were neither
science educators nor computer scientists. Therefore, a clear
and reliable rubric was imperative (Miller and Linn 2000).
Using an iterative process of design, discussion, application
and redesign of rubric levels and criteria descriptors, the re-
search team eventually agreed upon a dichotomous rubric that
broke each task down into multiple criteria and assigned either
a 0 (not demonstrated) or a 1 (demonstrated) to each, resulting
in more ratings. It increases reliability (Moskal 2000) across
raters by reducing subjectivity in the scoring process and is
useful if the raters have differing background knowledge.
Once the research team was able to come to agreement on
scoring using the rubric with a sample of pre- and post-assess-
ments, inter-rater reliability was investigated with one under-
graduate research assistant and one member of the research
team. These two raters scored a sample of 170 assessments
(31% of the total), including both pre- and post-assessments
and from all participating teachers’ classes. A Cohen’s kappa
analysis was run on each rubric item. After the first round of
scoring, kappa scores for 18 of the 53 rubric items were below
0.8, with 10 items scoring below 0.6. The research team
discussed these items and modified the rubric to provide more
clarity to the scoring process. The two raters then scored 10
more assessments together and 20 assessments separately, and
the Cohen’s kappa analysis was repeated for each rubric item.

The kappa scores for only four items fell below 0.8 and one
item scored below 0.6. Raters met to reconcile differences on
these five items and negotiated a shared process moving for-
ward. Some items required a different approach to scoring
while others benefited from modifications of the rubric to
prevent disagreement. The first line of Table 3 shows consid-
erable gains from pre- to post-test, and the temptation might
be to stop analysis there.

Domain-Specific Investigation

However, when two domains are integrated, it is not as if the
learning objectives no longer exist in isolation. Indeed,
teachers and administrators as well as researchers want to
know where students excelled and where they struggled in
relation to the science and the CT separately. We also wanted
to investigate whether the application of one may occur in
tandem with, or even enhance or hinder, the learning of the
other. We anticipated that as cultural and linguistic literacy can
skew assessment results (Abedi 2002), proficiency levels in
one domain of learning on an integrated assessment item may
affect the representation of student learning in the final results.

To further explore students’ performances, two researchers
independently coded each item (Moskal 2000) on the dichot-
omous rubric according to the domain of learning addressed
and then came to consensus through discussion. For these
purposes, we treat programming and CT as a single category
(Lye and Koh 2014) while acknowledging arguments for their
independence (Bell et al. 2015). Because this intervention
grounded the integration of CT in a particular programming
environment, the assessment tasks and these analyses mirror
that linkage. Therefore, each rubric item was labeled as mea-
suring either science (S) in isolation, CT in isolation, or sci-
ence and CT together (S/CT) together. An example science
item asked students to write the chemical reaction equation for
the formation of water from hydrogen and oxygen, while an

Table 2 Example performance expectation

Performance Expectation #3: Given a section of code for a procedure representing a chemical reaction in an agent-based computational model, extend
the code to implement a procedure for a similar but distinct chemical reaction.

Chemistry Core Idea: Substances react
chemically in characteristic ways. In a
chemical process, the atoms that make up the
original substances are regrouped into different
molecules, and these new substances have
different properties from those of the reactants.
The total number of each type of atom is
conserved, and thus the mass does not change.

Computational Thinking Practice: Constructing
computational models: Create new or
extending existing computational models by
encoding model features in a way that a
computer can interpret

Science Practice: Constructing explanations and
designing solutions: Apply scientific ideas or
principles to design; construct; and/or test a
design of an object, tool, process, or system.

Potential Data: A functional section of code that will faithfully represent the chemical reaction requested, including proper stoichiometry and
identification of reactants and products

Potential Task: The respondent is given a functioning section of code for an agent-based computational model of the water decomposition reaction and
the balanced equation for the decomposition of glucose. The respondent is then asked to write the code to implement the glucose decomposition
reaction.
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example CT item asked students to identify the objects and
their properties from an excerpt of NetLogo code. An example
of a blended science and CT item is presented in Fig. 2.

Of the 53 lines of the scoring rubric, 20 itemswere coded as
CT, 10 as S, and 23 as S/CT. Table 4 presents examples of
each. We were specifically interested in looking at incorrect
responses on the items that blended CT and science to see
whether evidence of learning in either science or CT could
have been masked by an incorrect application of the other.
We suspected that a student may have learned something;
however, failure to apply learning in both domains could re-
sult in a score of “0” so that this learning would not be re-
vealed within the quantitative analyses of scores. The follow-
ing section describes both quantitative and qualitative analy-
ses in order to highlight the evidence that was captured
through a qualitative analysis but not uncovered through ru-
bric scoring.

To measure whether the change in pre- and post-test scores
was statistically significant, we conducted aWilcoxon signed-
rank test, appropriate for non-normally distributed data, to
analyze differences in means between the pre- and post-test
scores, thus treating each administration as a repeated measure
on the same sample of students. Assessment scores are report-
ed in Table 3. Gains were proportionally greatest on CT items

and lowest on the items that blended science and CTconcepts.
Concern over students’ poor performance on these items led
to a qualitative analysis of their responses.

Qualitative Analyses

Traditional scoring of a performance assessment involves a
rubric that specifies expected demonstrations of learning by
students; using such a rubric can produce more reliable scores
(Miller and Linn 2000). Integrating CT is a relatively new
endeavor. Our aims were both to evaluate the sensitivity of
our assessment and accompanying scoring method and to
learn more about what students gained from the intervention.

To focus the qualitative analysis, we selected the students
who had scored the lowest on the items that blended CTwith
science (totaling 0 to 3 out of 23 points possible). A total of 97
students (out of 182) met these criteria with 42 students scor-
ing 0 points, 19 scoring 1, 25 of them scoring 2, and 11
achieving 3 out of the 16 possible points on the blended items.
Two researchers engaged in joint qualitative analysis
(MacQueen et al. 1998), looking at students’ responses to
blended S/CT tasks on item five (Fig. 2). Using an inductive
coding process (Thomas 2006), we annotated the responses
and noted areas where we observed students demonstrating

Table 3 Pre-/post-assessment
gains by domain of learning N = 182 Pre-test median score Post-test median score P value Effect size

Overall

53 points possible

4.0 18.0 < 0.001 0.825

CT

20 points possible

3.0 12.0 < 0.001 0.768

Science

10 points possible

0.0 3.0 < 0.001 0.736

Blended items

23 points possible

0.0 3.0 < 0.001 0.635

Fig. 2 Blended S/CT question in
our PACT
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knowledge of either science or CT that was not captured by
the numeric score. Our qualitative analysis also identified im-
portant alternative conceptions (Herrmann-Abell et al. 2016)
in one domain that hindered their ability to perform in the
other domain, thus leading to an incorrect response to the
integrated task. Such analyses can allow the assessment to
be used as a powerful formative tool (Basu et al. 2018).

We focused our analysis on responses to the blended ques-
tion in the PACT (Fig. 2). The first four items on the assess-
ment included simpler tasks, such as object and property iden-
tification in code, writing a balanced equation, and naming a
scientific law. The fifth item presented both science concepts
and code with which students had worked in CCTs 1 and 3,
requiring a high level of science and CT integration. Presented
with the code for splitting water, students were asked to follow
Several Steps Toward Changing the code to represent the
breakdown of glucose and to offer a justification.
Performance on item five was broken down into 23-line items
on the rubric. Table 4 presents one example aligned to each of
the three domains.

Learning Uncovered

The qualitative analysis of students’ responses on the blended
S/CT tasks uncovered examples of two key aspects of student
learning that the researchers agreed could not be detected
through rubric scoring. First, difficulty in one aspect of the
two domains (S/CT) sometimes challenged students’ repre-
sentations of learning. As a result, students sometimes dem-
onstrated learning differently from that specified in the rubric,
resulting in a score of zero. Second, analyses also revealed the
presence of alternative conceptions that would be important
for consideration by a researcher or teacher when planning
subsequent lessons or interventions.

Figure 3 shows both types of undetected learning. This
response did not receive any points, because S1 circled the
chemical equation provided in the question rather than the
code, and instead of representing the breakdown of glucose
in code, the student changed the equation to what appears to
be an incorrect attempt at an equation for the formation of
carbon dioxide. On the pre-assessment, S1 had simply written

“IDK” for the entire task. While the score did not increase, we
can still learn from this student’s approach on the post-test.
First, the lack of vocabulary in one domain (CT) affected the
demonstration of performance in the other. The term “code”
was used throughout the CCTs in the programming context,
but here, S1 misinterpreted “code” to refer to the chemical
formula rather than the snippet of NetLogo code. Many others
(n = 42) also interpreted the chemical formula as the “code”
and attempted to change the equation in a way that made sense
to them (Fig. 4 and Fig. 5). Although the word code is a term
of art in programming, it specializes a more familiar, general
concept. In some sense, a chemical formula is a code in which
terms stand for objects, organizations of objects, and opera-
tions in the world.

While S1 was inhibited by a misinterpretation of “code,”
there were aspects of CT that the student did demonstrate. A
correct response to 5b would have included the objects as
indicated by the chemical equation for the breakdown of glu-
cose (glucose, oxygen, carbon dioxide, water). However,
since a misunderstanding of “code” led S1 to offer a different
equation, naming those objects was no longer appropriate.
Instead, S1 named the two objects (“C” and “O”) present in
the new unbalanced equation provided in 5a. This indicates an
understanding of “objects” that would be included in a model
were the student to create a computational model of this chem-
ical formula, albeit not at the level that these models were
constructed. In this case, the response to 5b depended on per-
formance in 5a, and to that extent, the student demonstrated an
understanding of the objects (atoms in this case) that would be
necessary in their computational model. The student’s misin-
terpretation of “code,” that is, misunderstanding the science
involved, prevented the scorer from seeing aspects of CT
learning. Task 1 on the assessment evaluated CT in isolation,
and when asked to identify objects in the model, the majority
of students, including S1, identified the objects correctly. By
contrast, in the context of an integrated task, the student’s
incorrect approach to the science hindered their performance
on the CT, as specified in the rubric.

S1’s response also revealed an alternative conception. An
earlier question on the assessment asked students to state or
describe the scientific law or theory that supported a balanced

Table 4 Example criteria from the rubric for scoring task 5

Task Rubric criteria Domain

5a–c Did the student include accurate stoichiometry to represent the chemical equation?
6 used before the carbon dioxide molecule

Science

5d Did the student justify the changes necessary to represent the chemical reaction
model? Procedure name: to properly communicate the function of the procedure

CT

5a–c Did the student correctly form a list representing all reactants in line 1? The list in
line 1 includes the following: glucose-molecule, first-oxygen-molecule,
second-oxygen-molecule, third-oxygen-molecule, fourth-oxygen-molecule,
fifth-oxygen-molecule, sixth-oxygen-molecule or six-h2o-molecules

Science/CT
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equation for the formation of water. S1 received full points for
the statement, “the theory is that nothing can be created or
destroyed, only rearranged.” However, the equation the stu-
dent wrote in item 5 was not balanced, implying a struggle
with higher-level application of the law of conservation of
matter in spite of prior factual identification. This alternative
conception was observed across multiple students’ responses.
While 106 out of the 182 students had either explicitly men-
tioned “law of conservation of mass” or suggested conserva-
tion of matter in their written answers to a science question,
more complex items on the assessment yielded different re-
sults. On a related task that required the students to demon-
strate their understanding of the law of conservation of
mass—going beyond memorizing a physical principle—
wherein they had to balance a chemical equation, only 41
out of the 182 correctly used the right coefficients in the equa-
tion. The inability of the students to enact their understanding
of law of conservation of matter when it came to the integrated
task highlights an affordance of using a well-designed assess-
ment. During the professional development sessions prior to
project implementation, the teachers assured us that balancing
an equation (specifically the reversible equation for water
forming and splitting) could be considered as prior knowledge
for their students. However, our findings (such as those in
Figs. 3, 4, and 5 ) suggest that within the context of integrated
assessment tasks, we may uncover such overlooked
misconceptions.

Drawing from Bloom’s Taxonomy (1956, revised version
[Krathwohl 2002]), providing the Law of Conservation of

Mass required only that students “remember,” the lowest level
of cognitive demand. Alternative conceptions were most evi-
dent in the blended items, and we posit that this is due to the
higher cognitive demand required in application of both learn-
ing domains. In the blended question, to correctly change the
code for the breakdown of water to the breakdown of glucose,
students needed to “analyze” (Level 4.0; Krathwohl 2002) the
components of both the chemical equation for the breakdown
of glucose and also the code provided in order to “create”
(Level 6.0) new code for implementing the breakdown of
glucose. This required representation of the correct reactants
and products with the right molecule amounts as
“interpret[ed]” (Level 2.1) from the chemical equation. It also
required that the students interpreted the given code so that
they knew how to use it as a guide for the new procedure. For
example, they would need to “understand” (Level 2.0) that
“hatch” creates new molecules and therefore should be used
prior to introducing the products in the simulation. This re-
flects the changing nature of science education, with recent
directives that science curricula incorporate core ideas, prac-
tices of scientific reasoning, and cross-cutting concepts (NRC
2012). As Pellegrino (2012) states, “We are moving beyond
vague terms such as ‘know’ and ‘understand’ to more specific
statements like analyze, compare, explain, argue, represent,
predict, etc. in which the practices of science are wrapped
around and integrated with core content (p.832).” Students’
struggles with the higher cognitive demand that are character-
istic of such integrated tasks is evidenced by the assessment
data presented here.

Fig. 3 S1 identifies objects for an
incorrect equation

Fig. 4 S2 lists chemical elements
to add to model
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A last observation from S1’s response was a mismatch in
expected representation of learning according to the rubric and
actual representational choices made by students. Given the
complexity involved in representing atoms in our simulation,
our NetLogo simulations had represented molecules. Our ru-
bric too reflected our stance of focusing on the molecular
representation of objects. Yet, students proposed representing
atoms on the assessment. Thus, for 5b, the rubric specifies that
students should provide the following objects for one point
each: glucose (C6H12O6), oxygen (O2), carbon dioxide (CO2),
and water (H2O). Student 1 suggested adding “C” and “O.”
Student 2, along with many other students, does something
similar, suggested adding “C,” “H,” and “O” to the model
(Fig. 4). The student did not receive points for this response,
but each of these are atoms present in the molecules that com-
pose the equation for the breakdown of glucose, which is
perfectly correct.

In contrast, S3 (Fig. 5) correctly identified several mole-
cules by name in the chemical equation. Similar to S1 and S2,
S3 had struggled with the pre-test. All students supplied varied
forms of responses, including “IDK” and “I don’t know” for
questions 5a and 5b. In the post-test, we saw two different
ways of responding. All three responses, to a greater extent,
were correct. S1 and S2 demonstrated an understanding of
atomic composition of chemical substances, although it re-
mains unclear whether they understand which objects were
the reactants and which were the products and how the reac-
tants were transformed. In contrast, S3 appeared to grasp
chemical formulas enough to translate the formula into com-
mon names. However, the three students’ lack of vocabulary,
particularly in comprehending “list of objects,” appeared to
hinder their performance in 5b.

On the whole, students’ varied approaches to molecular
versus atomic versus nomenclature-based representations
show that students may choose different approaches to
representing their learning. While the representations may
not be incorrect, they also may not always align with the
expectations of assessment designers or of the devised method
for reliable scoring. Still, research has shown that the differ-
ence between atoms and molecules is difficult for students
(Lee et al. 1993); thus, methods for assessing students’ under-
standing in this area are important, and allowing multiple ap-
proaches may not always uncover such struggles.

Figure 6 presents an entirely different example of undetect-
ed learning—here in CT. Rather than changing the code to
implement the breakdown of glucose as the task asked, S4
chose to add a new object, “energy,” to the simulation. S4
did not interpret the product-reactant concepts represented in
the equation of glucose breakdown (i.e., of glucose breaking
down in the presence of oxygen resulting in the formation of
water and carbon dioxide) but did demonstrate an understand-
ing of energy being released subsequent to glucose
breakdown—a concept that was previously covered in class.
While our question aimed to prompt students to think about
the chemical objects (glucose, oxygen, water, and carbon di-
oxide), S4 went beyond that to represent a science concept
learned in class. The student drew on that knowledge to offer
a new code-based model using appropriate coding structures
for the implementation of a new object, “energy,” including
the designation of appropriate new properties (e.g., circle
shape, yellow color, and with random movement). While we
can only conjecture about S4’s scientific reasoning, it is clear
that the student was assessing and reasoning about the scien-
tific model and the role of energy in glucose breakdown (as
evident in the response to 5b and 5d), and drawing on that
reasoning to think about abstractions and computational
models. Models are abstracted representations of a certain
aspect of a selected phenomenon created with a certain pur-
pose (Giere, 2004). The abstraction could be at different levels
and applied to any aspect of a phenomenon: it could be ap-
plied to the reactants and products in a chemical reaction, as
we had done in our models and expected in the assessment, or
could be applied to energy and its transformation, as S4 had
done. The broadest kind of assessment would acknowledge
this while evaluating a student’s performance in assessing a
model, a critical CT skill (Weintrop et al. 2015).

Discussion

This article reports on a larger project that explores the inte-
gration of CT with middle school science, with the aim of
infusing CT practices into science instruction in a way that
deepens students’ understanding of chemistry concepts that
are difficult to learn. Here, we focus on the challenges associ-
a ted with and lessons learned from the des ign,

Fig. 5 S3 recognizes the molecules in the equation
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implementation, and evaluation of an integrated performance
assessment. We describe our augmentation of quantitative
analyses of a traditional rubric-based scoring approach with
a second round of scoring that differentiated by discipline
measured and qualitative analyses of students’ responses to
an open-ended task. We present a stage in the iterative devel-
opment of an integrated CT and science intervention and as-
sociated assessment. In response to the analyses of data pre-
sented here and other data collected (e.g., video, student arti-
facts, teacher reflections), our team continues to develop cur-
ricular and assessment materials in tandem.

We report here on both partial success and complexity that
arises as we learn more to fully integrate CT into core content.
In particular, we argue that new forms of instruction require
new forms of assessment. We agree with other work that ad-
vances integrated assessment and offer more depth to that
work by pointing out how integration here changes the

underlying epistemology of what is taught. Our work falls into
the line of inquiry that investigates the benefit of open-ended
assessments. Within this, we argue for multiple approaches to
demonstrate learning, and in particular for scoring methods
that are differentiated so that learning in each domain can be
uncovered, including detailing the ways that the integration
changes that epistemology. The benefit of this approach is not
only a more sensitive instrument to provide evidence of learn-
ing but also an opportunity to identify alternative conceptions
or gaps to inform instructors’ next steps.

Epistomologically Pluralistic Assessments One of the
affordances of learning science in the computational context
is the opportunity to encounter concepts through multiple rep-
resentations and, in turn, to approach problems through mul-
tiple avenues. Integrating computational systems affords mul-
tiple ways of knowing and doing. One of the creative benefits

Fig. 6 S4 implements energy as a
new object in the model
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of computational modeling is that one can create representa-
tions of the same concept as seen through multiple lenses; we
argue that assessments should reflect this affordance.
Assessment design should not only support but encourage
multiple ways of doing. Pragmatically, this can include
open-ended items in which an objective is specified, yet a
student may achieve this objective in multiple ways. In our
context, students were asked to create or modify code to im-
plement a scientifically accurate phenomenon. The student
may receive particular concepts that must be modeled, but
the task can be approached through multiple avenues. In this
way, the assessment itself becomes a learning exercise
affording the student with the opportunity to demonstrate his
or her learning utilizing a rich array of acquired resources and
skills. Such activities mirror real-world scientific practices and
provide a rich learning environment (Järvelä 1995). This en-
vironment holds potential both for higher cognitive demand
applications of learning and also for the identification of stu-
dents’ struggles with concepts.

Uncovering Alternative Conceptions Another benefit of the
rich learning environment created by integrating CTwith oth-
er domains is that it can reveal alternative conceptions. The
nature of integration creates high-cognitive demand tasks, as
each domain is applied to the other.We have seen that students
have difficulty understanding the distinction between atomic
and molecular representations and models. Normal science
instruction moves often elide the differences, because it is so
easy to move between them in language and chemical formu-
las contain both atomic and molecular representations. But in
CT, abstraction means that at any given moment, we must
choose either atoms or molecules and stay with them. Thus,
solving science problems in the CT context puts a higher de-
mand on the student. Our observations are that these tasks
reveal whether a student is able to go beyond “remembering”
the difference to actually applying it systematically to a more
complex integrated task. In this way, such analyses can then
also be powerful formative assessment tools (Basu et al.
2018), informing next steps for instruction.

Differentiated Scoring Since an integrated assessment actually
mirrors the interdisciplinary nature of real-world tasks, it
could be questioned whether it is important to know the spe-
cific domain in which a student struggled. We argue, a priori,
that in the classroom context, domain-specific conclusions
about student learning are important, for example to inform
adjustments to future instruction. Therefore, if assessments
consist of integrated tasks, we need a scoring method that is
sensitive to the detection of learning in each domain and the
interplay of domains to make conclusions about the nature of
students’ strengths and weaknesses. This argument extends a
similar approach used for scoring project-based learning
(Capraro and Corlu 2013; Petkov and Petkova 2006) to the

domain of assessment. Validity lies in “the degree to which
evidence and theory support the interpretations of test scores
entailed by proposed uses of tests” (AERA and NCME 1999,
p.9). Our use of a differentiated rubric increases validity by
showing that students learned some aspects of one of the do-
mains, but their performance on blended items was, at times,
hindered by limited understanding of the other domain. Our
analyses reveal that an integrated approach can result in sig-
nificant learning gains. Yet, decoding the precise nature of the
gain can be difficult. Looking at items from the point of view
of differentiated scoring can add sensitivity to the way we
assess learning. An important next step is to investigate ap-
proaches to the design of blended assessment tasks and ac-
companying rubrics that will allow us to detect that sensitivity
more efficiently.

Conclusions

The current work struggles with the nature of this assessment,
proposing that we integrate the assessment but differentiate
the scoring. We seek to balance the need for efficient methods
of administration and scoring with sensitivity to the complex
nature of the learning we are trying to engender. Our message
is both a proposal and a caution: First, as people attempt to
create efficient approaches to assessment, it is crucial that they
not overlook the most important benefits of the integrated
approach—enhanced encounters with computing methods of
expression tailored, in this case, for science. Designing assess-
ments and the accompanying rubrics are iterative endeavors,
similar to that of designing instructional modules. Our analy-
sis suggests potential in using an open-ended assessment that
supports and encourages multiple ways of doing. We recog-
nize that the level of qualitative analysis conducted for this
research cannot practically be undertaken by each classroom
teacher. While qualitative evaluation of open-ended assess-
ment responses is ideal, it is time consuming. A teacher or
researcher may instead choose to seek opportunities to quali-
tatively evaluate students’ progress on formative assessments
or to conduct qualitative analysis on only a sample of student
assessments, in order to inform next instructional moves.
Second, the desire to use integrated assessment tasks in order
to match instruction may lead to overlooked alternative con-
ceptions or important gains in one domain or the other.
Therefore, we see reason to include, in addition to integrated
items, items assessing multiple facets from each domain that
are not fully integrated. Our findings suggest that the changes
to the instructional context as a result of integrating CT neces-
sitate such an approach at least until we have a deeper under-
standing of the interplay of elements.

As multiple stakeholders explore potential routes for inte-
grated CT assessment, such as automated scoring, we recom-
mend consideration of the need for assessments that afford
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students the same opportunities to “think” and “do” in multi-
ple ways. The interplay of integrated domains in an assess-
ment context may benefit from specified identification of do-
mains assessed by particular assessment tasks to produce a
fuller picture of students’ strengths and weaknesses in the
various domains. Future rubric designs should attempt to al-
low for multiple expressions of learning while also linking
criteria to the domain addressed. This is consistent with the
call for systems of assessment (Grover 2015; Pellegrino
2012). All purposes cannot be served by one assessment.
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