
An Empirical Study of Activity, Popularity, Size,
Testing, and Stability in Continuous Integration

Aakash Gautam, Saket Vishwasrao, and Francisco Servant
Virginia Tech

{aakashg, saketv02, fservant}@vt.edu

Abstract—A good understanding of the practices followed
by software development projects can positively impact their
success — particularly for attracting talent and on-boarding new
members. In this paper, we perform a cluster analysis to classify
software projects that follow continuous integration in terms
of their activity, popularity, size, testing, and stability. Based
on this analysis, we identify and discuss four different groups
of repositories that have distinct characteristics that separates
them from the other groups. With this new understanding, we
encourage open source projects to acknowledge and advertise
their preferences according to these defining characteristics, so
that they can recruit developers who share similar values.

Index Terms—data mining; clustering; characterizing; contin-
uous integration

I. INTRODUCTION

The identification of the practice and culture of software
projects can play an important role in their success — partic-
ularly for open source software projects, and for newcomers.

For example, Von Krogh et al. [1] posit that the level of
activity (lurkers vs. contributors) and the types of activity in-
volved within a repository are important factors that newcomer
developers consider to decide whether to start contributing to
an open source project. Furthermore, multiple studies (e.g.,
[2], [3]) identify barriers that may hinder new developers to
contribute to a project, such as the difficulty to contribute, lack
of information, and complexity of the project modules.

In this paper, we aim to provide empirical evidence for the
extent to which different open source projects show a set of
characteristics that are normally considered as highly desirable
in software development: activity, popularity, size, testing, and
stability. Newcomers may assume that, when software projects
show some signs of sophistication, they will also show many
other desirable characteristics. We posit that such assumption
may not necessarily always hold. As such, we focus our
analysis in open source projects that show a particular sign of
sophistication and know-how in terms of software practices:
following continuous integration (CI) practices. While there
are some empirical studies of open source projects (e.g., [4],
[5]) or hurdles in migrating and maintaining CI systems (e.g.,
[6], [7], [8]), there are none (to our knowledge) that have
described the practices in open source projects that use CI.

We perform a cluster analysis over a collection of software
repositories from TravisTorrent dataset [9], which we comple-
ment with GitHub Archive [10]. The combination of datasets
allows us to obtain information about each project’s individual
activities as well as its popularity, size and test setup.

Our analysis reveals a set of software project profiles that
show different levels of activity, popularity, size, testing, and
stability. By providing this set of project profiles taken from
a large set of real-world projects, we aim to help open source
project creators and maintainers to be explicit about these
characteristics, and to help new developers become aware of
the culture and expectations of their repositories of interest.

II. DATA MANAGEMENT

In this study, we use 05-03-2016 TravisTorrent CSV [9] as
the main source of data. This dataset had information about
build jobs that were triggered through Travis CI system and
so, we cleaned records such that each instance in our dataset
was a unique commit that triggered a build through the Travis
CI system. There could be multiple commits within the build,
but in our analysis, we consider the commit that triggered
the build. We augmented this dataset with repository-related
information such as the number of watchers, number of open
issues, and the repository size from GitHub Archive [10].

Table I lists all the properties that were used in the experi-
ment. We focused on using attributes that represented activities
related to the build job, the outcome of the build job, and
public information about the repositories.

De-duplicating records based on the commit ID, and aug-
menting it through Github Archives resulted in a total of
94,391 records. Our dataset is available online [11].

III. CLUSTERING

Since we wanted to know the types and characteristics of
open source repositories, we conducted a K-means clustering
using Weka’s [12] SimpleKMeans algorithm, which uses the
Euclidean distance measure. Weka internally normalizes the
attributes before computing the distances. Furthermore, Weka
automatically handles a mixture of categorical and numerical
attributes. To find an optimal number of clusters, we measured
the sum of squared errors (SSE) at each cluster count. We
found that the mean SSE out of 10 tests decreased more slowly
after 4 clusters. Thus, we clustered the data in 4 groups. As K-
Means is sensitive to initial cluster centers, we tried initializing
the clustering with 5–15 random seed centers and chose using
10 centers since it provided the lowest SSE.

IV. ANALYSIS OF THE CLUSTERS

Table I shows the mean values of the attributes within the
clusters. We highlight the values that are higher or lower than

the mean values for all projects by more than one median
absolute deviation (MAD). We use MAD as a robust measure
that is more resilient to outliers than the standard deviation.
Comparing the values of each cluster, we can identify some
distinct characteristics.

A. Cluster 1: The test-priority repositories

These repositories have a test-first attitude with high test
density. We hypothesize that their priority on tests help them
to identify issues, achieving fair stability in builds — despite
having smaller teams and significantly larger code churn rates.

1) Activity: A small number of highly prolific developers
contribute to high code churn. They also describe their changes
more succinctly than other cluster’s developers. The pull
requests in this cluster are relatively less verbose (averaging
15.5 words) in the title and description of the pull requests
than the overall mean (34.8 words). This cluster actually lies
on the lower quarter in terms of verbosity, since the 25th

percentile is 16.26. A possible explanation for these short
change descriptions may involve the cluster’s small team sizes:
committers in this cluster possibly assume that their colleagues
understand the unexplained changes in pull requests.

A typical build in a repository in this cluster showed a
high churn rate (100.2), which lies at the top 12% of all
the repositories in the dataset. Correspondingly, builds in
this cluster also showed a large number of modified files.
Additionally, since these repositories have small team sizes,
their number of contributions per team member is highest
among clusters — they have highly prolific developers. A
typical repository in this cluster gets 351.7 commits from each
contributor — the mean for all repositories was 154.

2) Popularity: Surprisingly, despite the strong emphasis
that these repositories put on testing, they showed the lowest
values in popularity metrics. When compared to the overall
mean, they have far fewer forks (29.3 compared to 117.4),
fewer watchers (167.4 compared to 533.2), and smaller team
sizes (6.2 compared to 10.4).

3) Size: Despite having small team sizes, these number of
open issues does not deviate much from the overall mean. In
the dataset, we notice a weak positive correlation between the
number of members in a team and the number of open issues
(Spearman’s rho= 0.329; p < 2.2e-16). We posit that the high
test density in these repositories facilitates identifying issues
in the code. Another unique property of these repositories is
that they have a large size (in KB) — among the top 10%.

4) Testing: These repositories have about 3 times the mean
test density. The centroid point in the cluster has 8769 lines
in the test cases per 1000 executable production source lines
of code. The 95th percentile of test lines is 2683.43 so, this
group of repositories fall in the top 5% of the entire population
in terms of number of test lines. This group also has larger
number of test cases and test asserts per 1000 executable
production source lines of code both of which lie above the
95th percentile. A previous study had found weak correlation
(Spearman’s rho = 0.207) between the number of developers
and test cases [13] but this group is anomalous to that finding.

5) Stability: We find that the builds triggered in these
repositories have a success rate of 0.73, which is comparable to
the overall mean of 0.72. We hypothesize that despite having
largest source code churn rate, the builds are fairly stable
because of the high test density.

B. Cluster 2: The popular, high-flying repositories in the block

This group of repositories lies on the other extreme of the
testing priority spectrum where they are large and popular, but
tend to set low-priority to testing.

1) Activity: The mean churn rate within the cluster is 80.4
whereas the population mean is 88.4 from which we can infer
that they make smaller changes in a typical commit. They also
tend to have pull requests that have most words in the title and
message (45.8 words compared to 34.8 overall mean). We posit
that this verbosity is necessary to helps others to understand
because they tend to have a large team size.

Furthermore, the commits on these repositories are on a
subset of files that are frequently updated whereas other files
are not modified often. The files that are changed have a mean
of 28 unique commits over the last three months whereas
across the repositories the mean is 23 and the 75th percentile is
25. Since developers are mostly working on a fixed subset of
the code, they are not adding tests cases. This can be seen from
“tests added” attribute in Table I where the number of tests
added is 0.00 in contrast to the 0.04 mean across repositories.

2) Popularity: The repositories within this cluster have the
largest number of watchers. They also have the largest number
of forks with an mean of 453.75 forks. The overall mean is
117.41 and the 90th percentile is 314 which shows that these
repositories are extremely popular in GitHub.

The group of repositories in this cluster also have the largest
team size with mean size of 22.6. The overall mean team size
of the population is 10.4 and 75th percentile is 12.0. Probably
because they have a large team size, this group of repository
has the lowest per user commits among the entire population
(72.1 versus the overall mean of 154.0) signaling that at when
team sizes are large, some developers may contribute less.
Similarly, this group of repositories have the least amount of
source code line changes in a typical commit.

3) Size: The repositories within this cluster lie in the top
10% of the largest code bases in Github that uses Travis CI
system. They have a mean of 64802.13 executable production
source lines of code whereas the overall mean is 24762.68 and
the 90th percentile is 57356 lines.

These repositories have a large number of open issues that
lie among the top 15% among all the repositories. Since they
have the largest code base of all the groups of repositories,
it is intuitive to expect larger number of issues in the code.
In addition, we hypothesize that having a large number of
watchers and forks helps in identifying and reporting issues
in the project despite having a low number of test cases.

4) Testing: We see that the repositories within this cluster
do not prioritize tests like the repositories in cluster 1. The
mean for test lines per 1000 production lines of code in this

TABLE I
MEAN VALUES FOR THE 25 ATTRIBUTES OF THE 4 CLUSTERS IDENTIFIED IN OUR K-MEANS CLUSTER ANALYSIS. WE HIGHLIGHT VALUES LOWER AND

HIGHER THAN THE OVERALL (FULL DATA) MEAN VALUES BY ONE MEDIAN ABSOLUTE DEVIATION (MAD).

Attribute Attribute Full Data Cluster-1 Cluster-2 Cluster-3 Cluster-4
Type (94257) (12136) (16979) (51924) (13218)

Activity # files added 1.0 1.1 0.8 0.9 1.2
per # files deleted 0.5 0.7 0.8 0.3 0.5

Build # files modified 4.5 5.1 4.1 4.5 4.4
src files changed 4.4 4.7 4.5 4.3 4.1
doc files changed 0.5 0.6 0.4 0.4 0.7
other files changed 1.0 1.6 0.8 1.0 1.1
code lines changed 88.4 100.2 80.4 88.6 87.1
tests added 0.04 0.02 0.00 0.06 0.01
tests deleted 0.2 0.2 0.1 0.2 0.2
test lines changed 32.4 30.9 31.3 33.1 32.5
commits in the build 2.5 2.6 2.5 2.4 2.6
commits on files touched 23.2 23.5 28.6 22.3 19.4
contributions per member 154.0 351.7 72.1 147.0 105.0
words in pull request 34.8 15.5 45.8 35.8 34.6
% by core team member 0.82 0.56 0.80 0.88 0.81

Popularity # watchers∗ 533.2 167.4 1,852.1 180.4 561.0

forks∗ 117.4 29.3 453.8 33.9 94.4

team members 10.4 6.2 22.6 8.2 7.5

Size sloc 24,762.7 20,179.1 64,802.1 16,180.7 11,251.3

open issues∗ 22.5 23.4 52.3 10.5 30.1

repository size (KB)∗ 24,503.9 42,921.2 26,256.2 18,778.5 27,834.2

Test # test cases per kloc 230.2 484.8 120.3 215.3 196.4

Suite # test lines per kloc 3,202.1 8,769.8 1,547.5 2,650.5 2,382.0

Size # assert cases per kloc 506.4 1,086.7 270.3 470.3 418.2

Stability % of build success 0.72 0.73 0.74 0.76 0.51
Example ‘jruby/warbler’, ‘resque/resque’, ‘rdoc/rdoc’, ‘opal/opal’,
projects ‘rspec/rspec-rails’ ‘mitchellh/vagrant’ ‘alecgorge/jsonapi’ ‘lsegal/yard’

Attributes marked with * were obtained from GitHub Archive. The remaining attributes were obtained from TravisTorrent.

cluster is 1547.5 whereas the overall mean is 3202.06. Like-
wise, compared to the overall mean, this cluster of repositories
have fewer test cases (120.32 compared to 230.22) and test
asserts (270.3 compared to 506.4) per 1000 lines of code.

5) Stability: The builds were successful 74% of the time
which is comparable to the overall mean of 72%.

C. Cluster 3: The average Joes

This is the largest of all four clusters with 55% of the
instances falling under this cluster. Two interesting observa-
tions of the cluster are that the core team members tend to be
more involved in the projects than volunteers and that these
repositories have a significantly low number of open issues.

1) Activity: The repositories within this cluster have aver-
age (close to the overall mean) values across attributes related
to activity: they have an average amount of source code churn
rate in a typical commit and an average test code churn
rate. They have typical pattern when it comes to number
of words used in the pull request title and message. The
contribution amount from each team member is also average
when compared to the entire set.

2) Popularity: These repositories have an average number
of watchers but a significantly lower number of forks signify-
ing that these repositories may not be popular among volunteer
contributors. An average repository in this cluster has 33.9
forks whereas the overall population mean is 117.4 forks per

repository. Probably because these repositories are not popular
among larger contributors, we notice that the commits made
on these repositories tend to be more by core team members.

3) Size: These repositories tend to have below average
number of open issues with 10.5 on an average whereas the
overall mean for all the repositories is 22.5. As mentioned
above, there was a weak positive correlation between number
of team members and the number of open issues which we
see in these set of repositories. Since these repositories have
lower number of members in the team (8.2 compared to 10.4
overall), they have a lower count of open issues.

4) Testing: This group of repositories have an average
number of test cases (215.3 compared to overall mean of
230.2) and asserts per 1000 production lines of code (470.3
compared to 506.4 overall), and an average number of test
lines (2650.5 to overall mean of 3202.1).

5) Stability: The build jobs triggered in this clusters tends
to be successful 76% of the time which a bit more than the
overall mean. However, the difference is not significant.

D. Cluster 4: The risk-taking adventurers
On average, half of the builds triggered in this group of

repositories tend to fail. The uniqueness of the repositories
with regards to the activity is that the changes tend to be made
on files that have been relatively less worked upon before. The
repositories in this cluster also have fewer lines of code in
production.

1) Activity: We call them “adventurers” because the devel-
opers in this group of repositories tend to make changes on
files that are relatively less frequently changed. Typical files
they change in a commit has a mean of 19.4 unique commits
over the last 3 months whereas the population mean for this is
23.2. This implies that developers in these repositories change
files that have not been changed recently.

2) Popularity: These repositories have a number of watch-
ers (561) higher than the overall dataset mean (533.2). How-
ever, they have a relatively lower number of active team
members compared to other clusters. The mean team size is
7.51 whereas the overall mean is 10.4. The number of commits
per contributor is below the overall mean (105.0 versus 154.0)
and so is the amount of changes in a typical commit.

3) Size: Furthermore, these repositories have a relatively
low number of executable production lines of code. The mean
number of lines in the repositories of the cluster is 11251.3
lines of code whereas the overall population mean is 24762.7.
However, despite having fewer lines of code in production,
these repositories have a relatively larger number of open
issues. They have a mean of 30.1 open issues whereas the
overall mean is 22.5 and the 75th percentile is 26.

They have smaller code base and team size, both of which
were weak but positively correlated to number of open issues.
Yet, they have the largest number of open issues. This suggests
that these projects are either new projects or “hobby projects”.

4) Testing: These repositories have close to the overall
mean values with regards to the test suite. They have 2382.0
test lines per 1000 lines of production code which is com-
parable to the overall mean of 3202.1. Likewise, their values
are close to the overall mean for test case density and assert
statement density.

5) Stability: We call them the risk-taking ones because they
are they only ones who are characterized to have frequent
build failures. 51% of the builds that have been triggered in
this cluster have succeeded whereas the overall mean lies at
72%. We posit that these repositories practice a “build fast,
fail fast attitude” during development.

V. CONCLUSION

In this paper, we provided a characterization of open
source software projects that follow continuous integration
practices. We characterized these software projects based on
their activity, popularity, size, testing, and stability. By using
cluster analysis, we provided empirical evidence that improves
our understanding of the practices followed by open source
software projects in the aforementioned areas.

Such better understanding the practices that software
projects may follow in terms of activity, popularity, size,
testing, and stability can benefit practitioners in a number
of ways. Newcomers could make a more informed decision
about which software project to join. Older contributors and
maintainers of open source projects could make it easier to
know these characteristics by defining them more explicitly.

In particular, our analysis revealed practices that open
source project creators and maintainers could choose to make

explicit or to take actions about them. Some examples of
such practices are: (1) Giving high priority to the creation
and maintenance of test cases which could be made explicit
for newcomers to abide to, (2) providing expected levels of
verbosity in pull-request titles and messages which newcomers
would benefit from knowing beforehand, (3) having high
numbers of lurkers (those who watch but do not contribute)
which maintainers may choose to put efforts in place to try to
engage them, (4) having highly involved core team members
so newcomers can adjust expectations for their chances to
contribute, and (5) stating cultural values e.g., “build fast, fail
fast”, which could be helpful in retaining newcomers [2].

Based on the work in this paper, we plan to study some of
the observed characterizations in more depth. Some interesting
avenues of future research involve the design of novel on-
boarding portals for newcomers that are customized to the
specific culture of the repository, the study of project man-
agement styles for different project profiles, or the study of
barriers for developer migration across project-profile borders.

REFERENCES

[1] G. Von Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining,
and specialization in open source software innovation: a case study,”
Research Policy, vol. 32, no. 7, pp. 1217–1241, 2003.

[2] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in open
source software projects,” in Proceedings of the 18th ACM conference
on Computer supported cooperative work & social computing. ACM,
2015, pp. 1379–1392.

[3] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer
onboarding in github: the role of prior social links and language expe-
rience,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, 2015, pp. 817–828.

[4] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, Jul. 2002. [Online].
Available: http://doi.acm.org/10.1145/567793.567795

[5] A. Capiluppi, P. Lago, and M. Morisio, “Characteristics of open source
projects,” in Software Maintenance and Reengineering, 2003. Proceed-
ings. Seventh European Conference on. IEEE, 2003, pp. 317–327.

[6] D. Ståhl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and
Software, vol. 87, pp. 48–59, 2014.

[7] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the” stairway
to heaven”–a mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,”
in Software Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on. IEEE, 2012, pp. 392–399.

[8] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of migrating
to agile methodologies,” Communications of the ACM, vol. 48, no. 5,
pp. 72–78, 2005.

[9] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration,”
in Proceedings of the 14th working conference on mining software
repositories, 2017.

[10] I. Grigorik, “The github archive,” https://www.githubarchive.org/.
[11] A. Gautam, S. Vishwasrao, and F. Servant, “An Empirical

Study of Activity, Popularity, Size, Testing, and Stability
in Continuous Integration,” May 2017. [Online]. Available:
https://doi.org/10.5281/zenodo.439362

[12] G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning
workbench,” in Proceedings of the 1994 Second Australian and New
Zealand Conference on Intelligent Information Systems, 1994. IEEE,
1994, pp. 357–361.

[13] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in Proceedings
of the 13th International Conference on Quality Software (QSIC 2013).
IEEE, 2013, pp. 103–112.

