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ABSTRACT and automation [16, 19, 29, 44]. These definitions and properties rep-

We present reflections based on qualitative analysis of data from
the CHEM+C Project which promotes computational thinking (CT)
in classrooms through integration with science classes. The curricu-
lum utilizes multiple representations, requiring students to work
with physical phenomena, chemical equations, digital simulations,
and modifiable code-based representations. Much CT focus on ab-
straction naturally emphasizes (1) extraction of a set of features
from an object or process, and (2) finding commonality between
objects and processes. But Rosen [38] encourages us to think about
abstraction as also including the production of new concepts or
actions. Integrating CT into science offers the possibility of en-
hancing this aspect of abstraction. Changing the representational
affordances available to the students allows them to take their CT
thinking beyond learning-to-abstract towards learning-through-
abstraction. This perspective moves computation from an internally
focused exercise into the expression of valued ideas in a computa-
tional medium.
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1 INTRODUCTION

CT is commonly defined as the thought process that involves “for-
mulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an
information-processing agent” [14, pp. 1]. Research posits a range of
skills as part of CT including abstraction, decomposition, evaluation,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366892

resent progress but do not yet reflect a precise canon of generalized
knowledge and capabilities. The part of the issue we address here is
(by analogy) like the different elements in learning to read a natural
language. The purpose of reading is not just learning-to-read, but
rather reading-to-learn. Yet these are not entirely distinct. Part of
learning-to-read is gaining an understanding of the larger system
of communication beyond the mechanics while reading-to-learn is
partaking more fully in that system. This is one of the reasons that
being read to is such a critical part of learning-to-read [9]. Even
in early stages, the larger purposes of reading are exposed to the
learner in a way that is integrated with the mechanics. By analogy,
integrating CT into science affords a similar opportunity to make
meaningful entities out of computing representations.

Many approaches utilize contexts to motivate elements of pro-
gramming, including the Media Computation approach [20], games
(e.g., [4, 37, 45]), narrative storytelling (e.g., [11, 46]), and a focus
on meaningful data (e.g., [3, 23]). This work adds to these, but more
particularly creates an opportunity for students to use the medium
of computing to encounter and express thoughts about the structure
of the world, such as those learned in science. We extend diSessa’s
approach [15] to teaching physics and computing in an aligned way,
and build on earlier sets of insights [24, 35, 42]. We begin with the
position that CT provides tools to think with, that is, it is a skill that
can facilitate learning of diverse domains. In particular, analysis
of the current project shows that details of how students struggle
to understand 7" grade chemistry can interact appropriately and
usefully with ideas of abstraction relevant to computing.

The work reported here is part of a larger multi-year, multi-
school study of integrating CT into pre-existing U.S. middle school
science classes. It included three integrated replacement units for
7th and gth grade science in low to moderate socio-economic-status
(SES) schools, each of which combined teacher professional de-
velopment and specially designed technological environments im-
plemented in NetLogo [47]. The curriculum followed the Texas
Essential Knowledge and Skills (TEKS) for science [1] and the Next
Generation Science Standards (NGSS) [43] and covered chemistry
concepts which have been found to be challenging for students
such as the nature of matter and chemical equilibrium [22, 34].

Our curriculum utilized multiple representations of a scientific
phenomenon, some of which were implemented in computational
form. We reflect on our observations of students’ practices as they
transitioned between those representations. We observe that these
transitions seemed to require thinking in terms of the computational
abstraction that implemented the (abstract) scientific construct.
That is, CT created meaningful accounts of science phenomenon
and the science provided access to how computation embeds ideas.
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In computing, teaching abstraction normally begins with the
ideas of (1) extracting important features and ignoring unimportant
ones, and (2) finding commonalities across contexts. Abstraction is
thus presented as hierarchical. In contrast, from the first, abstraction
in science requires students to move laterally across different repre-
sentations of the concepts or actions — in this case, the chemical phe-
nomena. Abstraction in computing too requires lateral movements
such as in choosing representations and — at the core of computing
— in using abstract data types, but these are typically presented
only as advanced concepts. By using multiple representations in a
science context (rather than in a stand-alone computing class), we
make an advanced idea of computing more easily attainable. We
argue for abstraction-based thought as a critical process towards
learning, i.e., analogous to the way that being-read-to plays a role
in the progression from learning-to-read to reading-to-learn. Thus,
encounters with multiple representations indicate the path beyond
learning-to-abstract towards deeper learning-through-abstraction.

2 RELATED WORK

Wing’s influential paper [48] brought wide attention to CT; how-
ever, the idea of learning computation and using it to learn other
concepts pre-dates Wing’s paper and includes influential work
such as LOGO [35] and varied systems influenced by it (e.g., [6, 13]).
In fact, the phrase “computational thinking” can be seen in Pa-
pert’s 1980 book Mindstorms [35, pp. 182]. diSessa [15], building
on his experience of using the Boxer programming environment
in Physics learning, argued for “computational literacy” which
presents computation as an infrastructure to understand concepts
in varied subject domains, including computation itself.

In recent years, there has been a significant movement to dif-
ferentiate CT from computer science. One such move has been in
trying to integrate practices of CT in other domains rather than
it being isolated and under the purview of computer science (e.g.,
[5, 7, 16, 21, 31, 33, 36, 41, 44]). There are pragmatic reasons for
integrating CT with another domain such as science. These include
lack of time and space in the curriculum, the importance of CT for a
variety of life outcomes, and the importance of providing exposure
to students who might not take a dedicated class. There are also
theoretical, learning-based reasons to integrate CT. Several vital sci-
ence learning practices such as representational competence [28],
problem identification, solution design and verification [17, 26],
and use of models in deepening understanding [12] also appear to
be important components of CT [19, 44, 49].

Abstraction is central in all these definitions and practices of CT.
This can be heard in Wing’s claim that “abstractions are the ‘mental’
tools of computing” [49, pp. 3718]. Weintrop et al. [44], based on
empirical data, propose a taxonomy defining CT in science and
mathematics that includes modeling and abstraction. Similarly, Lee
et al. [29] propose CT as the use of abstraction, automation, and
analysis to solve problems in domains such as robotics and game
design. Likewise, in developing CT modules for training pre-service
K-12 teachers, Yadav et al. [51] presented abstraction as one of the
“five basic CT concepts”. Similarly, in science learning, abstraction
has been found to help in problem-solving [26] and transfer [32].

Despite abstraction being held in common across science and
CT, the relationship between abstraction in science and CT remains

underspecified and perhaps even avoided. Weintrop et al. [44] re-
serve the word “abstraction” in the particular context of “Creating
Computational Abstractions”, which appear as a sub-component of
the high-level category “Computational Problem Solving Practices”.
Cuny et al. [14] and Weintrop et al.’s [44] ideas are mutually rein-
forcing: the high-level definition of CT is to formulate a problem in a
way that solutions can be carried out by an information-processing
agent and computational abstractions are defined as precisely those
things that can solve the problem. But Weintrop et al. [44] side-
step using the word when many scientists would, as a component
of “modeling and simulation practices”, particularly under “Using
computational models to understand a concept”

To unpack this, consider abstraction more generally. Rosen [38]
defines abstraction as a “mental process in which new ideas or
conceptions are formed by considering several objects or ideas and
omitting the features that distinguish them”. He highlights three
major aspects of abstraction: (1) Extracting a set of features from an
object or process while ignoring other features of those objects or
processes, (2) Finding commonality between objects or processes
encountered through different contexts and transcending those
contexts, and (3) Resulting in new concepts or actions.

Most focus on abstraction in CT has been on the first two aspects
of abstraction i.e., ignoring the details and finding commonalities
[49]. These are what Weintrop et al. [44] mean when they locate
“creating computational abstractions” as a sub-component of “com-
putational problem solving practices”. Abstraction in computing
includes “data abstraction”, which supports expressing how a com-
puter scientist wants to use data, and “procedural abstraction”,
which supports hierarchical composition of what the computer
scientist wants the computer to “do”. Both require extracting mean-
ingful features at any given level of abstraction and leaving the
underlying details below that level.

An example is that we devise computers to create a correspon-
dence between a certain concrete, electronic state and the binary
number “01000001”; we then form a programming structure that al-
lows us to see “01000001” as the decimal number “065” and then we
create a layer of abstraction in which, if “065” is used in a text, it ap-
pears as “A”. Each hierarchical layer of abstraction is more removed
from the concrete machine and more tied to human purposes, yet
each is deemed to signify “A” in some form.

An equal, if not more, important skill is to use such understand-
ing to formulate new concepts i.e. abstract laterally. Continuing the
“A” and “065” example, the learner could (and does) build laterally
on the differences between the two layers to acquire the concept
of data types (“A” is a character and “065” is an integer) and use
this new concept in computer programs. The reification of a new
concept outside the implemented hierarchy corresponds to Rosen’s
third kind of abstraction. Here, abstraction is used to learn a con-
cept. This is an advanced element of CT, but it is a focal essence of
science learning. For example, Kozma [27] differentiates between
experts and novices by the fluidity in which they connect multiple
representations to construct meaning. In chemistry, students strive
to understand chemical formulas that can only be understood with
lateral movements to references of abstract entities such as atomic
structures, stable energy states, and conservation of matter. When
we integrate CT into chemistry learning, we should not lose sight
of the importance and difficulty of these concepts.



However, it is not clear how curricular activities can be designed
in an integrated classroom setting such that they support teachers
and students learning and using abstraction. We start with sim-
pler, more pragmatic reflections related to student experience and
achievement of drawing upon abstraction-based thoughts to deepen
their understanding when they encounter multiple representations
afforded by our integrated CT and science curriculum.

3 STUDY CONTEXT

Our intervention included curriculum, technology, and teacher par-
ticipation and preparation. We presented a multi-representation
system that used (1) physical, macroscopic phenomena along with
(2) standard scientific representations of microscopic phenomena,
(3) macroscopic and microscopic phenomena in relation to one
another as shown through animated, modifiable simulations, and
(4) modifiable code-based representations. The computing environ-
ments had two faces. The first allowed students to experience and
investigate a relevant scientific situation through an animated simu-
lation with interactors (sliders, buttons) and instruments (readouts,
graphs). The second supported students to explore and change the
simulation by reading and revising the code model.

The teacher initially knew little about CT and had participated in
two sessions each of week-long professional development training
that introduced concepts of CT, NetLogo, and walked her through
student experience. Teacher materials included a scope and se-
quence document for the Computational-Chemistry Task (CCT or
replacement unit) that specified the standards addressed, provided
a “driving science question”, a “driving CT question” and identified
related skills [8]. Interaction with the CCT was supported by a
number of student materials such as their drawings interpreting
the simulation, a structured design critique document, and a code
planning document. The data presented here is from the third CCT
(CCT3); the first two CCTs had been taught six months earlier.

3.1 CCT3: The Natural Carbon Cycle

The natural carbon cycle was modeled in the context of macro-
elements in the environment. The default view shows only the
macro-phenomena, but students may choose to “show” the micro-
elements which was hugely magnified and overlaid on the view (see
Figure 1). They experienced the simulation first with only macro-
elements before bringing the micro-elements into view. The code
modeled photosynthesis and cellular respiration.

The objective was to help students see how chemical processes
that they had learned previously (e.g. photosynthesis) took place in
context, as a system. Looking at the carbon cycle as a system that
could be modeled was hypothesized as beneficial to CT because it
encouraged students to think about systems in a comprehensive
way that included feedback and because it invited discussion and
argumentation about the nature of models [8, 30, 44]. The teacher
was encouraged to engage students in discussions about, for ex-
ample, what aspects of the model in the simulation were accurate
or not accurate and scientifically important or unimportant. These
discussions were hypothesized to help students gain access to the
kind of abstraction necessary to create models.

Students could also gain additional perspectives by looking at the
code that implemented the system. They did this after significant,

semi-structured exploration of the simulation. Simulations and code
ran in their browsers on Chromebooks in a slightly modified ver-
sion of NetLogo [47], an agent-based programming environment.
Normally, students encounter NetLogo starting with simpler pro-
grams and learn the structure of the code gradually; however, our
desire to prioritize science at the edge of student learning led us to
provide a more complex simulation and code from the beginning.
We scaffolded students’ focus on parts of code. They were asked to
look at the code in CCT3 from two perspectives: as investigators of
the model and simulation via reading the code and as changers of
the model and simulation via writing new code.

3.2 Participants

Twenty-one 7th grade students in honors science participated in
this part of the study during five 50-minute classes. Demographic
data were provided on a questionnaire by 20 students. 11 reported as
male and 9 as female. Reported ethnicities were 12 white, 4 Hispanic
or Latinx, and 4 of mixed race. When asked about prior experience
with computing, 11 students reported none, 7 reported some, and
2 reported a lot. 18 students expected to earn an “A”; 2 expected
to earn a “B”. The students had worked on two CCTs earlier and
were familiar with the tool. However, during the first day of CCT3,
many struggled to recall operational aspects of the system and such
concepts as “turtles” covered previously.

3.3 Data Sources and Analysis

Data collected include pre/post assessments, student artifacts, logs,
and video recordings. The recorded classroom videos provided de-
tails about how students used the simulation and model, and the
ensuing discussion when they encountered different representa-
tions. The first two authors transcribed the videos using Transana
[50], capturing details of students’ actions and interactions with the
instructor, classmates, and the researcher (e.g., interventions). We
supplemented the video data with the students’ written responses.

Following Saldaiia [39], the three authors discussed observable
actions in the videos and identified critical incidents of learning
in the transcripts. These were then discussed in multiple meetings
to identify salient practices. They were further triangulated with
students’ written responses. This paper reports on several critical
incidents that exemplify students’ applications of abstraction while
working with multiple representations.

4 FINDINGS

We noticed several student practices that, when coded and reflected
over, pointed towards students formulating abstract scientific think-
ing. The representations presented through the curriculum among
macro and micro-levels. In the particular data reported here, they
involved thinking through the meaning of sequential instructions,
conditions, and different kinds of models.

4.1 Limitation in Science Representation

In the pre-assessment, we asked students if the chemical equation:
“Hy + O2 = H,O” was balanced. 11 out of the 19 who submitted
their pre-assessment response correctly said that the equation was
not balanced mentioning concepts of conservation of matter. How-
ever, 8 of the 11 struggled to balance the equation correctly with
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Figure 1: The interface and simulation showing magnified microscopic elements overlaid on the macroscopic phenomenon

responses such as “because it says Hy + Oz = Hz0 that would =
H02” and “The chemical equation is showing Hy + Oz = H0
when it should be Hy + O = H,O”.

These answers show that there were gaps in students’ knowledge
and skills. Rote memorization of the idea that H and O cannot exist
as single atoms could lead students to seek the right answer from
an algebraic, distributive point of view; however, deeper answers
lie in the way the chemical formula refers to important abstractions
in chemistry such as the idea of a chemical equation. A chemical
equation is a symbolic representation of abstract ideas about atoms,
molecules and stable energetic states, and summarizes the process
without being explicit [25]. This kind of lateral abstraction with
implicit assumptions make it hard for students to use such symbolic
representation and connect it to their understanding of the principle
of conservation of matter.

4.2 Encountering Science by Pulling Meaning
from the Code

In contrast, computational representations such as codes have to be
more explicit and thus can afford opportunities to students to con-
nect their understanding with the representation. In our project, the
students encountered multiple representations and were frequently
asked to translate between those representations, drawing meaning
from one and applying to another. One such encounter occurred
when the instructor conducted a discussion about photosynthesis
that culminated with her writing the reactants (H2O and CO3) and
the products (C¢H120¢, and O2) on the whiteboard. Reactants were
connected to products via an arrow ; however, the formula was not
balanced. She then asked students to work in groups to study the
code-based model that simulated photosynthesis.

The students read a snippet of the code which was a function
that modeled photosynthesis, a micro-level process. The code did
multiple things in a lateral rather than a hierarchical relationship
to one another, folding together the chemical formula, knowledge
about stable energy states, and conservation of matter. It modified
several properties of plants that represent the reactants in a pho-
tosynthesis reaction (water, carbon dioxide, and energy), and the

product (glucose and oxygen). The instructor asked the students to
discuss in groups (of 2 to 4), write what they think was happening
in the code, and eventually write the balanced chemical equation
for photosynthesis. To complete the task, the students had to trans-
late between representations which required understanding the
abstractions involved in both the chemical equations and the code.

Reflecting on two group’s discussions, we see how each “pulled
science meaning out of the code”. Group 1 immediately identified
that the code models photosynthesis (first remarked by S3) and
drew upon their science understanding to decipher the code, noting
that it means “photosynthesis”:

S21: So, if plant water level is greater than or equal to six
and plant carbon dioxide level is greater than or equal to
six and plant energy level is greater than equal to 1 so,
umm, what does that mean?

S3: Photosynthesis

S21: Or things, if all that [conditions mentioned in the
code] are right then photosynthesis happens. Like all 3
[conditions] are what they are supposed to be

S3: Yeah, if you have the right amount of everything then
really six oxygen are released I guess

S21: Then photosynthesis will happen or if this [the con-
dition] is right then oxygen hatches

S3: Yeah. So, if you have the right amount of carbon diox-
ide, plant energy, and water, release six oxygen molecules

The phrase “release six oxygen” implied that there is a physical
location, as in the macroscopic representation of plants, from which
the microscopic entities emanate. This exemplifies the parallel they
draw between their scientific knowledge and the code. By draw-
ing parallels between their prior science knowledge and the code
snippet, they were able to see the code as embodying the science.

In contrast, Group 2 did not initially see the connection between
the code and the science concept. They struggled and required the
instructor’s help in disambiguation:

S15: To photosynthesize plant water level greater than
or equal to six and plant carbon dioxide level is greater



Code statement

if plant-water-level >= 6 and
plant-carbon-dioxide-level >= 6
and plant-energy-level >= 1

Group 2’s explanation
If this is true this happens
[curly braces indicating
the lower part of the code]
creat [create] oxygen 6
not visible; not seable
[seeable in] real life
molecule float to top
where it happens has to do
with height; lets the oxygen
move around on its own

hatch-oxygen 6

set size 0

set heading 0 — random 10

set ycor ycor + 1 + random size

set plant-glucose-level
plant-glucose-level + 1

set plant-water-level
plant-water-level - 6

set plant-carbon-dioxide-level
plant-carbon-dioxide-level - 6
set plant-energy-level
plant-energy-level - 1

adds stored glucose

takes water from plant
takes carbon dioxide
from plant

takes energy from plant

Table 1: Group 2’s explanation of the photosynthesis code

than ... So, that’s telling you that if the plant water level or
plant carbon dioxide level is greater than or equal to six
and plant energy level is greater than or equal to one that
would happen [pointing to the lower part of the code]
S14: Write that down

S15: Hatch oxygen six. Umm, so, what should we do. If
this [the conditions on the top] is true, then this happens.
Do you guys agree?

S2: What does it say?

S14: Ok, hatch oxygen six [reads rest of the code]

S14: This does not make sense, this one is not like this one
at all.

S15: Because they are different things

I: Listen y’all, if it says hatch oxygen, what do you think
it means to hatch?

S2: There are oxygens

I: Yeah, it’s just letting it out, it’s just creating it. So then
you would say, create six oxygen.

Group 2’s effort was placed on understanding the code as it is —
symbols that “did not make sense”. They struggled to understand
statements like “hatch oxygen 6”, which neither groups had previ-
ously encountered. Through inquiry and the instructor’s scaffold,
they understood the symbols and sequentially worked on the code,
tying parts of the code to the science concept that the instructor
had suggested. Their attempt reflected in what they wrote next to
each line of code in their later response (Table 1). Here, students
dealt with the code statement-by-statement, drawing upon parts
of their science knowledge to understand and explain bits of the
encountered code. Unlike Group 1, they did not see the code as a
single unit but were able to grasp parts of the reaction through the
code. The code-based model helped the students understand the im-
plicit aspects of the chemical reaction. Their discussion also pushed
them to explore how variables were used to define properties of
the plants and the overall processes.

As the students progressed through the activity, they built upon
their understanding. They delved deeper into the meaning of the

last four lines of code. In particular, when a group encountered
the code “set plant-water-level plant-water-level — 6, the students
moved beyond saying that “the water level is minus six” to “water
level goes down six” or “takes water from plant”, and to conclude
that it is “because we are talking about, like, the photosynthesis
process and then it [the code snippet] says if the plant water level
is greater than or equal to six”. These students moved from under-
standing local meaning based on the context where they encoun-
tered the representation to abstracting it to a higher-level concept
where they forgo the specificity, merge it with the concept(s) ob-
tained from other representations (chemical equation and prior
science knowledge in this case), and reinforce their understanding
of the phenomenon. Several groups took longer to get to this idea,
but were eventually brought closer to understanding through the
teacher’s efforts in the whole class discussion:

I: ... set plant water level plant water level minus six. S2,
what do you think that means?

S16: You subtract six

I: Because in reaction, how many did we use?

S16 (and some others): Six

I: Six. So, just like in normal chemical reaction these six
waters are gone because they have now created a new
substance. So, the plant loses those water molecules. The
chemical reaction has taken place and it doesn’t have those
water molecules anymore because of the fact that we have
our products, our reactants are gone, ok? This is important
because, one, in the real science world that is true because
you wouldn’t have those six H2Os, you wouldn’t have
those six CO; anymore because we have new substances,
ok? And this is important in the program because it stops
the plants from just continuously going through photo-
synthesis. It is saying that plants now need to gain six
more HyO molecules and six more CO, molecules and one
radiant energy in order for photosynthesis to take place.

S16’s response was limited to their understanding of the code
and to the context (the code snippet) in which they encountered it.
They may not have yet grasped that the “subtract six” implied the
reactants being used in the chemical reaction. By discussing the
commonalities between “normal chemical reaction” and the code,
the instructor pushed students towards higher-level abstract think-
ing. By further discussing how part of the code snippet conveyed
relevant information in seemingly two different representations -
“the real science world” and “the program” - she pushed the stu-
dents up the ladder of abstraction [40] where scientists, including
chemists and computer scientists, generally revel [28].

4.3 Encountering CT by Pulling Meaning from
the Science

Students encountered and interpreted sequentiality and branching
without apparent difficulty. For example, both the above groups suc-
cessfully interpreted conditionals in the form of “if-then” statements
and the logic inherent in the “and” statements by drawing upon
their understanding of the science, as we heard in S15’s comment.

Students were also beginning to learn about procedural abstrac-
tion, at least to the extent of understanding blocks of code within
the procedure. This occurred once in relation to the sequence of



“and” and again with respect to setting the values for the newly
“hatched” oxygen objects. While discussing with Group 2, the in-
structor asked about the block of code within “hatch oxygen”. Later,
she went on to ask the entire class why the plant water level goes
down, hinting at data abstraction by building on the students’ ex-
isting knowledge that photosynthesis happens in plants. In the
discussion that ensued, the code afforded opportunities to the in-
structor to highlight the differences between computational and
science models. In a computer model, unlike a science one, we
must subtract water explicitly so that it “stops the plants from just
continuously going through photosynthesis”.

5 DISCUSSION AND CONCLUSION

We presented a series of activities aimed to help students learn
CT and science through integration. Students dealt with multiple
representations through abstraction-based thought that allowed
them to pull meaningful information from those representational
forms to deepen understanding.

When Group 1 pulled meaning out of the photosynthesize code,
they implicitly “agreed” to the assumptions in the code because
they saw the parallels and could consolidate their understanding of
the science and the code statements. Thus, “plant-water-level” and
“plant-carbon-dioxide-level” became meaningful entities for them.
Since the students could “see” those lines of code as photosynthesis
i.e. Rosen’s second aspect of abstraction, they were able to reify
their understanding to conceive one entity (code statements) as
processes and re-conceive those as objects at a higher level.

When the other group encountered the statement “set plant-
water-level plant-water-level — 6, it did not run parallel to their
understanding of the science. Chemical equations, which they were
familiar with, implicitly mention such transformation whereas the
code had to mention it explicitly. This difference caused the students
to struggle to consolidate their understanding which led them to
discuss, explore, and eventually see the similarity between the
code statement and the chemical equation. We saw students move
from a lower-level idea of the code representing “subtract six” to
a higher-level concept of it representing the fact that to form a
glucose molecule we need six water molecules. The differences
in what is explicit and implicit, and how they are expressed in
different representations meant that the students had to work to
reconcile them and then to see them as mutually constitutive i.e.
build towards the third aspect of abstraction that Rosen [38] posits.

Our study involved 21 students from an honors science class
which is not representative of the population. We focused on critical
incidents from the classroom and do not present summative perfor-
mance analysis. Despite these limitations, our findings strengthen
our belief in the value of integrating CT in the science curriculum,
allowing us to present multiple representations in context. Reflect-
ing on the intervention, the following aspects of our intervention
helped encourage abstraction-based thoughts in the integrated CT
and science environment:

o Present multiple representations in context: The varied rep-
resentational choices encouraged students to think about what
is being represented and how they can be represented in multi-
ple forms. The computational medium afforded variation. This
provided opportunities for students to see that phenomena can

be expressed in multiple ways and then use abstraction-based
thoughts while transitioning between those representations.

e Follow pedagogical goals while making representational
choices: The photosynthesize code emphasized precisely the
pedagogical point that the instructor wanted to make rather than
being a more scientifically extensible model. With the instructor’s
scaffolds, students were able to extract key features, generalize
between the multiple representations, and build new concepts.

e Order the encounter with the representations: Encounter-
ing the simulation before the code helped when they encountered
the code model. The lack of experience with the macro represen-
tation has been identified as a problem in literature [18]. Their
earlier encounter with the macroscopic representation helped in
understanding newer code representation. We argue, along with
earlier research [2], that the order of representations is critical in
facilitating students to abstract and deepen their understanding.

¢ Ensure cross-representational coherence: The students could
see photosynthesis being simulated, the whiteboard had a chemi-
cal equation representing photosynthesis (albeit unbalanced), and
the code formulated the process of photosynthesis explicitly. The
coherency facilitated in movement across these representations,
encouraging the students to see the similarities and differences
and pull meaning from one to understand the other.

e Allow friction during encounters with representations: In
Group 2’s discussion, we see that friction arose due to the dif-
ference in what was explicit and implicit in the representations
that they encountered. The friction encouraged them to explore
different ways of looking at the representations, revisit their un-
derstanding of the domain and draw upon it to understand the
new representation, and negotiate the elements with one another.

A focus in scientific abstraction is on lateral relationships, as we
saw with the case of chemical equations and the assumptions they
hold. The notion of abstraction in computing starts with hierarchies
of data and procedures. Ultimately, all three aspects of abstraction
are important. Places in the curriculum where they align offer
important learning and teaching opportunities.

Looking to the future, finding such places will be an on-going
challenge. In particular, scientific abstraction may pull for different
kinds of pedagogical design than computational ones. From a CT
point of view, we want students to be able to see a set of code as
being part of a single unit, as Group 1 did. This is a practice of
procedural abstraction, involving Rosen’s first two elements [38].
It is aligned with CT practices such as modularizing and reusing
existing code [10]. But focus on this does not necessarily create
encounters with lateral abstractions. Seeing the code as a single
unit of the process does not by itself cultivate speculation about
such abstractions in the chemical equation as the stability of energy
states. While we see this approach as promising and important,
more research must help us understand the theoretical and practical
prospects and limitations in the depth of abstraction practices in
an integrated environment.
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