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Abstract 

In recent years, Computational Thinking (CT) has gained status as an essential skill. With little 
room in K – 12 curricula for new content, an alternative method for providing students 
opportunities to develop these skills is to incorporate CT into classes that all students take. 
However, there is not enough research in this context to conclude that integrating CT with other 
domains truly does deepen learning in both areas. This paper highlights evidence that students 
can learn CT and science in tandem, particularly when pedagogy weaves the two domains into 
classroom tasks in complementary ways. We describe how the scientific practice of 
argumentation can act as a synergistic tool, engaging students with both science and CT within 
the same activity. Quantitative results of a pre/post performance assessment and qualitative 
analyses of student artifacts demonstrate that argumentation holds potential for simultaneously 
engaging students with science and CT.  
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Introduction 

As multiple professions now rely on a computationally literate workforce, many argue for 
providing students with opportunities to develop such skills early on1,2. However, integrating 
computational learning with that of other STEM content areas is relatively new terrain for 
educators, and new approaches to content require investigative work on the most effective 
pedagogical approaches in this new domain3–5. This paper adds to this conversation by 
highlighting a particular curricular approach in which scientific argumentation acts as a 
synergistic tool for the two domains of computational thinking (CT) and science. Through 
selected student work and data on learning gains, we demonstrate how this approach can help 
students to make connections between these two content areas and to apply their learning of the 
two in tandem on classroom tasks.  

Integrated Computational Thinking  

Starting with Wing’s6 description of computational thinking as the habits of mind associated 
with a computational approach to solving problems, a number of definitions have been proposed, 
many of which are characterized by lists of components or skills associated with CT7–9. While 
similarities and overlap exist across perspectives on CT, there is no single agreed-upon 
definition. Definitions of CT also overlap with conceptualizations of other types of thinking, 
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such as a mathematical, engineering, critical, and creative thinking10, all of which are considered 
“21st century skills” that should be incorporated into K – 12 learning11. Due to the lack of 
instructional space in K – 12 curricula, one approach to introducing students to CT is to provide 
opportunities for its development in the context of core disciplines that all students learn, such as 
in the case of this work, middle-school science. This not only alleviates the pressure on coveted 
instructional time, it also enhances the learning experience by presenting two domains in a 
mutually beneficial way. Such interdisciplinary approaches enhance opportunities for 
engagement with tasks that resemble real world problem solving2. Science, in particular, shares 
pedagogical overlap with CT12, and the two disciplines are often used in tandem in 
computational science.  

Argumentation 

Our intervention included student-generated arguments for modifications made to NetLogo 
models. Netlogo is a multi-agent programmable modeling environment. Drawing inspiration 
from the argumentation session phase in Argument-Driven Inquiry13, students utilized data, 
scientific core ideas, and CT modeling practices to formulate arguments about modifications 
made to their NetLogo models. These arguments included a justification of why each 
modification is valid based on a scientific idea, e.g. conservation of matter, or a CT modeling 
practice, e.g. abstraction and representation. They then presented these arguments to their peers 
for feedback, referred to as the “argumentation session”13. This phase of our intervention 
increased student engagement and interaction in interpreting the CT and science content. In this 
way, argumentation can be thought of as the “+” in CHEM+C. 

The CHEM+C Approach 

The CHEM+C intervention consists of three curricular modules, referred to as Computational 
Chemistry Tasks (CCTs). Each revolves around a simulation of chemistry concepts reported in 
literature as difficult to learn. Concepts are modeled in NetLogo15, and include water forming 
and splitting, the aluminum copper sulfate reaction, and the carbon cycle. Each CCT follows a 
similar curricular sequence. Students experience an anchoring phenomenon16, showcasing a 
chemical reaction. In groups, students then create whiteboards interpreting the chemical reaction 
observed. They then explore a different representation of the reaction, this time in a computer 
model. Students are encouraged to approach this simulation as a scientific investigation. In 
groups, they critique the computer model using a worksheet called a Design Component Chart 
(DCC), explained more in a later section. Discussions resulting from this activity help students 
negotiate a change that would improve the model’s scientific accuracy. Scaffolded by the 
teacher, and by collaborating with peers, students then implement the improvement within the 
NetLogo code. 

In the first CCT, all activities are guided by the question “What is happening in a chemical 
reaction that we do not normally see?” and are centered around the formation and splitting of 
water molecules. The anchoring phenomenon in this CCT is a physical demonstration of water 
splitting.  To produce this reaction, a battery is submerged in a beaker of water, and a test tube is 
placed on top of each of the battery’s terminals. Epsom Salt (MgSO4) acts as a catalyst that leads 
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to the splitting of water into hydrogen and oxygen, observed as bubbles released into the test 
tubes. The accompanying computer model simulates this reaction, as well as water forming, at 
the molecular level (Figure 1). This paper draws from data collected during this first CCT. 

 

Figure 1. Screenshot of the NetLogo Simulation of Water Formation and Splitting 

Data Sources and Analysis 

Data analyzed represent the experiences of 180 students from 17 eighth-grade science 
classrooms in a low-to-moderate socio-economic-status (SES) public middle school in Texas. 
While this paper draws heavily from qualitative analyses of student-generated artifacts, we frame 
these within quantitative results from scores on a pre/post performance assessment consisting of 
tasks requiring applications of both science and CT.  The student artifacts were generated during 
two classroom tasks that utilized argumentation. In the first classroom task, students completed 
DCCs, worksheets that asked which aspects of the simulation were scientifically accurate, 
inaccurate, or missing. Prior to working on the DCC, the students had explored the NetLogo 
simulation, and were given a “science fact sheet” describing key science concepts modeled in the 
simulation. Worksheet data were transcribed into excel and coded by two members of the 
research team. Of these coded excerpts, the first author selected 17 quotes that represented 
science and CT learning as complementary. All four authors discussed and analyzed quotes, 
narrowing the data for inclusion in this short paper to five quotes.  

The second set of student artifacts analyzed were images of group generated white boards used 
by students to plan the change they would implement in the code in order to improve the model. 
Boards listed properties assigned to the object, MgSO4 (Epsom Salt) that would be added. 
Groups provided a rationale for each property, presented these boards to the class, and received 
feedback from their peers. The first author selected ten images in which the groups’ white board 
provided a clear rational for the object’s properties. Three authors then discussed each image and 
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collectively selected the four images that best represented synergistic use of science and CT 
learning to support their decisions. The following section describes our findings in detail.  

Results 

Results of the pre/post performance assessment suggested learning gains. Students could earn a 
maximum of 53 points on the assessment. A Mann Whitney U test indicated that overall 
summative post-test scores (Mdn= 18) were significantly (p < 0.001) greater than pre-test scores 
(Mdn= 4) with an effect size of 0.825. Still, the median score on the posttest suggested that 
students continued to struggle with the science and CT in this integrated context, and related 
pedagogical considerations are discussed elsewhere17. However, these learning gains supply only 
a partial picture of the effects of the potential of this intervention.  

Qualitative analyses of classroom artifacts revealed that the activities utilizing argumentation 
afforded opportunities for students to apply CT and science learning in tandem. Table 1 presents 
selected responses from students on the DCCs. In this activity, students applied science 
knowledge in both interaction with and critique of the computer simulation, thus engaging in 
both science and CT. Critiquing the model required an understanding of how it worked and also 
an understanding of the science modeled. Weintrop et al.18 proposed a taxonomy of applications 
of CT in mathematics and science instruction consisting four categories of practices: data 
practices, modeling and simulation practices, computational problem solving practices, and 
systems thinking practices. Table 1 links students’ responses to particular CT practices from this 
taxonomy. 

Furthermore, the artifacts contained evidence of students’ “knowledge in pieces” (KiP)19, 
fragmented ideas that have not yet been woven into a coherently integrated structure aligned to 
scientific truth. diSessa20 asserts that articulating and encountering these ideas in multiple 
scientific contexts assists students with such construction. Furthermore, unveiling these ideas 
provides formative feedback to the teacher on how such ideas could be rewoven in order to 
promote deeper understanding of a concept20.   

Table 1. Students’ Displays of Knowledge in their Judgements of the Model’s Accuracy 

Student Responses to “What is 
scientifically accurate about the model?”  

Highlighted CT practice 
from Weintrop et al.’s18 
taxonomy 

Science “Knowledge in Pieces”19  

“The model properly shows that the 
temperature does affect the molecules 
because when the temperature is heated, the 
molecules move faster and collide often.” 

Systems Thinking: 
Understanding the 
Relationships within a 
System 

Student observed that temperature affects 
molecules, and heat results in faster movement 
and more collision. (Student’s understanding 
is incomplete, but contains fragments of 
scientific truth) 

“The white arrows represent the molecules 
coming together, and I can choose if they 
come together by turning on the electricity.” 

Modeling and Simulation: 
Using Computational 
Models to Understand a 
Concept; Assessing 
Computational Models 

Student determined that the white arrows 
indicate water forming. Also observed that 
electricity must be present for this to occur. 
(This reveals a partial understanding of the 
role of electricity in the chemical reaction) 
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“When molecules collide, they don’t always 
react, because on this simulation, molecules 
are colliding all over the place, but a 
chemical reaction doesn’t occur.” 

Modeling and Simulation: 
Using Computational 
Models to Understand a 
Concept; Assessing 
Computational Models 

Observation of collision without reaction 
affirmed student’s prior knowledge that 
collision does not guarantee reaction.  

“The speed the molecules are moving at by 
moving the temperature because we changed 
the temperature from hot to cold a lot.” 

Modeling and Simulation: 
Using Computational 
Models to Understand a 
Concept; Assessing 
Computational Models 

Student utilized the controls in the models 
interface to systematically investigate how 
changing the conditions in the simulation 
affected the science modeled.  

“2 H2O forming, because in real life, they 
can only form in 2, not isolated.” 

Modeling and Simulation: 
Using Computational 
Models to Understand a 
Concept 

Systems Thinking: 
Understanding the 
Relationships within a 
System 

Student connected the observed reactions in 
the simulation to the balanced equation for the 
formation of water, as two water molecules 
are present in the product. 

Table 1 demonstrates how an activity requiring students to construct an argument engaged 
students in computational practices while also unveiling facets21,22 of their science 
understanding, what diSessa calls KiPs19.   

We found similar evidence of the role of argumentation in student-generated whiteboards. Figure 
2 presents three examples of group white boards on which students listed chosen properties for 
the object to be added(MgSO4) and a rationale for each. In this activity, students used science to 
support these decisions. In accordance with Weintrop et al.’s18 taxonomy, this activity engaged 
students in two key Computational Problem Solving Practices: “Choosing Effective 
Computational Tools” (using aspects of the simulation to explore), and “Creating Computational 
Abstractions”. Here, students fuse understandings of both domains to choose computational 
objects that both accurately represent the science and also suit the computational system. Their 
boards provide their rationales.    

In Example 2A, students allowed the number of atoms to dictate the molecule’s size. While 
slightly different from the concept of mass, as their board states, we consider this KiP that lies on 
a trajectory toward a deeper understanding of the science. In Example 2B, students again 
considered the number of atoms which choosing size, and as a result, chose for MgSO4 to appear 
bigger than H2O. In addition, they set “xcor” and “ycor” (variables of position) as “random”, 
suggesting engagement with concepts of Brownian motion23.  

Example 2C shows an application of data abstraction by the students. They assigned this new 
molecule a “turtle type” (a data object type) of “molecule” so that it would “act like” the rest of 
the molecules. This demonstrated their understanding that established behaviors of other 
molecules in the code will now be abstracted to this new object, due to the kind of object that it 
is. An interesting diversion in this example from the others is that in spite of this molecule being 
larger in nature, the group chooses to make their MgSO4 smaller than the other molecules. Their 
reasoning is that this foregrounds the scientific representation of the chemical reaction – a 
compromise similar to those made by actual scientists and computer scientists. Models prioritize  
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representations of specific phenomena and cannot be expected to holistically represent scientific 
reality24. Therefore, these students demonstrated an understanding of two critical CT practices: 
abstraction and representation. 

 

 

Example A: Students’ choose the molecule’s size based on the 
number of atoms in contains. 

 

  

Example B: Students’ positioning of objects reflects an 
understanding of molecular movement.  

 

Example C: Students apply data abstraction in the assignment of turtle type. Their chosen molecule size prioritizes the main 
purpose of the model.  

Figure 2. Student-Created Whiteboards Provide Rationale for Changes to the Simulation  

Conclusions and Future Work 

Integrating CT with other STEM areas is a relatively new practice, and investigations of whether 
integration is effective and best pedagogical approaches for doing so are ongoing. Our analyses 
reveal that student learning can occur simultaneously in CT and science, and infusing instruction 
with argumentation can play a role in the success of integration. Our examples show students 
drawing upon understandings of science while exploring and critiquing a computer simulation. 
We also observed students making decisions about computational modeling that were driven by 
both CT and science. Whether nascent or sophisticated, students’ articulated understandings of 
the science through such classroom tasks show components of KiP. Articulating ideas can 
deepen learning on its own, but this also generates formative feedback for the teacher. Moreover, 
argumentation may also be useful to the integration of other “21st century skills”, such as 
engineering thinking, and we encourage further research on the synergistic use of this 
pedagogical strategy. 
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